Skip to main content
Log in

Pulsed semiconductor lasers with higher optical strength of cavity output mirrors

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Asymmetric heterostructures with an ultrathick waveguide based on an AlGaAs/GaAs alloy system that allow lasing at a wavelength of 905 nm have been developed and fabricated by hydride metalorganic vapor-phase epitaxy. The internal optical loss and internal quantum efficiency of semiconductor lasers based on such structures were 0.7 cm-1 and 97%, respectively. It is shown that the highest output optical power of laser diodes with antireflecting (SiO2) and reflecting (Si/SiO2) coatings deposited on untreated Fabry-Perot cavity facets obtained by cleaving in an oxygen atmosphere reached 67 W in the pulsed mode and is limited by mirror damage. Treatment of Fabry-Perot cavity facets by etching in argon plasma and the formation of coatings with passivating and oxygen-blocking GaN and Si3N4 layers allowed an increase in the maximum output optical power to 120 W. Mirror damage was not observed at the attained output optical power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Sysoeva, Kompon. Tekhnol., No. 4, 19 (2007).

    Google Scholar 

  2. M. Ettenberg and H. Kressel, IEEE J. Quant. Electron. 16, 186 (1980).

    Article  ADS  Google Scholar 

  3. A. Yu. Andreev, A. Yu. Leshko, A. V. Lyutetskii, A. A. Marmalyuk, T. A. Nalet, A. A. Padalitsa, N. A. Pikhtin, D. R. Sabitov, V. A. Simakov, S. O. Slipchenko, M. A. Khomylev, and I. S. Tarasov, Fiz. Tekh. Poluprovodn. 40, 628 (2006) [Semiconductors 40, 611 (2006)].

    Google Scholar 

  4. V. V. Bezotosnyi, V. V. Vasil’eva, D. A. Vinokurov, V A. Kapitonov, O. N. Krokhin, A. Yu. Leshko, A. V Lyutetskii, A. V. Murashova, T. A. Nalet, D. N. Ni-kolaev, N. A. Pikhtin, Yu. M. Popov, S. O. Slipchenko, A. L. Stankevich, N. V. Fetisova, V. V. Shamakhov, and I. S. Tarasov, Fiz. Tekh. Poluprovodn. 42, 357 (2008) [Semiconductors 42, 350 (2008)].

    Google Scholar 

  5. S. O. Slipchenko, A. D. Bondarev, V. A. Kapitonov, A. V. Lyutetskiy, A. A. Maramlyuk, T. A. Nalet, A. A. Panin, N. A. Pikhtin, D. R. Sabitov, K. Yu. Telegin, S. A. Zorina, V. A. Simakov, and I. S. Tarasov, in Proc. of the 13th Conf. on Laser Optics LO’2008 (Russia, St.-Petersburg, 2008), ThR3-p18.

  6. P. Ressel, G. Erbert, U. Zeimer, K. Hausler, G. Beister, B. Sumpf, A. Klehr, and G. Trankle, IEEE Phot. Techn. Lett. 17, 962 (2005).

    Article  ADS  Google Scholar 

  7. C. L. Walker, A. C. Bryce, and J. H. Marsh, IEEE Phot. Techn. Lett. 14, 1394 (2002).

    Article  ADS  Google Scholar 

  8. A. Yu. Andreev, S. A. Zorina, A. Yu. Leshko, A. V. Lyutetskii, A. A. Marmalyuk, A. V. Murashova, T. A. Nalet, A. A. Padalitsa, N. A. Pikhtin, D. R. Sabitov, V. A. Simakov, S. O. Slipchenko, K. Yu. Telegin, V. V. Shamakhov, and I. S. Tarasov, Fiz. Tekh. Poluprovodn. 43, 543 (2009) [Semiconductors 43, 519 (2009)].

    Google Scholar 

  9. S. O. Slipchenko, D. A. Vinokurov, N. A. Pikhtin, Z. N. Sokolova, A. L. Stankevich, I. S. Tarasov, and Zh. I. Alferov, Fiz. Tekh. Poluprovodn. 38, 1477 (2004) [Semiconductors 38, 1430 (2004)].

    Google Scholar 

  10. D. A. Vinokurov, A. L. Stankevich, V. V. Shamakhov, V. A. Kapitonov, A. Yu. Leshko, A. V. Lyutetskii, D. N. Nikolaev, N. A. Pikhtin, N. A. Rudova, Z. N. Sokolova, S. O. Slipchenko, M. A. Khomylev, and I. S. Tarasov, Fiz. Tekh. Poluprovodn. 40, 764 (2006) [Semiconductors 40, 745 (2006)].

    Google Scholar 

  11. Zh. I. Alferov, M. A. Ivanov, Yu. V. Il’in, A. V. Lyutetskii, N. A. Pikhtin, and I. S. Tarasov, Pis’ma Zh. Tekh. Fiz. 21(3), 64 (1995) [Tech. Phys. Lett. 21, 195 (1995)].

    Google Scholar 

  12. G. Erbert, F. Bugge, J. Fricke, P. Ressel, R. Staske, B. Sumpf, H. Wenzel, M. Weyers, and G. Trankle, IEEE J. Sel. Top. Quant. Electron. 11, 1217 (2005).

    Article  Google Scholar 

  13. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

  14. S. O. Slipchenko, Z. N. Sokolova, N. A. Pikhtin, K. S. Borshchev, D. A. Vinokurov, and I. S. Tarasov, Fiz. Tekh. Poluprovodn. 40, 1017 (2006) [Semiconductors 40, 984 (2006)].

    Google Scholar 

  15. A. V. Ankudinov, V. P. Evtikhiev, V. E. Tokranov, V P. Ulin, and A. N. Titkov, Fiz. Tekh. Poluprovodn. 33, 594 (1999) [Semiconductors 33, 555 (1999)].

    Google Scholar 

  16. C. H. Henry, P. M. Petroff, R. A. Logan, and F. R. Merritt, J. Appl. Phys. 50, 3721 (1979).

    Article  ADS  Google Scholar 

  17. V. L. Berkovits, L. Masson, I. V. Makarenko, and V.P. Ulin, Appl. Surf. Sci. 254, 8023 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Pikhtin.

Additional information

Original Russian Text © A.N. Petrunov, A.A. Podoskin, I.S. Shashkin, S.O. Slipchenko, N.A. Pikhtin, T.A. Nalet, N.V. Fetisova, L.S. Vavilova, A.V. Lyutetskiy, P.A. Alekseev, A.N. Titkov, I.S. Tarasov, 2010, published in Fizika i Tekhnika Poluprovodnikov, 2010, Vol. 44, No. 6, pp. 817–821.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrunov, A.N., Podoskin, A.A., Shashkin, I.S. et al. Pulsed semiconductor lasers with higher optical strength of cavity output mirrors. Semiconductors 44, 789–793 (2010). https://doi.org/10.1134/S1063782610060163

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782610060163

Keywords

Navigation