Skip to main content
Log in

Mechanism of compensation of the donor impurity in the near-surface layer of gap during heat treatment in phosphorus vapors

  • Semiconductor Structures, Interfaces, and Surfaces
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The secondary ion mass spectrometry and capacitance—voltage measurements have been used to study the mechanism of formation of the near-surface layer with a low concentration of uncompensated donors in n-GaP grown by vapor-phase epitaxy and subjected to heat treatment at different pressures of phosphorus vapors. The dependence of the thickness of the mentioned layer on the pressure of phosphorus vapors has a minimum at a pressure of (1.5 ± 0.5) × 103 Pa. It is shown that at vapor pressures above the mentioned value, the interstitial P, which forms a deep electron trap, is a suitable candidate for the role of compensating acceptor. At low pressures, the probable compensating center is the P vacancy giving rise to a deep level with the energy Ec—(0.21 ± 0.01) eV. At 700°C, the effective diffusivity of interstitial P is ≈(3 ± 1) s- 10-15 cm2/s, while that of the P vacancy is ≈(3 ± 1) × 10-14 cm2/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. G. Seebauer and M. C. Kratzer, Mater. Sci. Eng. R 55, 57 (2006).

    Article  Google Scholar 

  2. E. C. Jones and E. Ishida, Mater. Sci. Eng. R 24, 1 (1998).

    Article  Google Scholar 

  3. A. N. Morozov, E. S. Dobrynina, V. T. Bublik, M. I. Voronova, and V. I. Petrov, Fiz. Tekh. Poluprovodn. 20, 1892 (1986) [Sov. Phys. Semicond. 20, 1186 (1986)].

    Google Scholar 

  4. A. V. Skazochkin, Yu. K. Krutogolov, Yu. I. Kunakin, and G. G. Bondarenko, Poverkhnost’. Fiz. Khim. Mekh., No. 5, 75 (1996).

    Google Scholar 

  5. J. Nishizawa, Y. Okuno, K. Suto, T. Sato, and S. Yamokoshi, Solid State Commun. 14, 889 (1974).

    Article  ADS  Google Scholar 

  6. A. Tanaka and T. Sukedawa, J. Appl. Phys. 53, 9208 (1982).

    Article  ADS  Google Scholar 

  7. J. Nishizawa, M. Koike, K. Miura, and Y. Okuno, Jpn. J.Appl. Phys. 19, 25 (1979).

    Article  ADS  Google Scholar 

  8. A. R. Peaker and B. Hamilton, in Deep Centers in Semiconductors, Ed. by S. T. Pantelides (Gordon Breach Sci., New York, 1986), p. 349.

    Google Scholar 

  9. A. V. Skazochkin, Yu. K. Krutogolov, and Yu. I. Kunakin, Semicond. Sci. Technol. 10, 634 (1995).

    Article  ADS  Google Scholar 

  10. R. W. Jansen and O. F. Sankey, Phys. Rev. B 39, 3192 (1989).

    Article  ADS  Google Scholar 

  11. A. Hoglund, C. W. M. Castleton, and S. Mirbt, Phys. Rev. B 72, 195213 (2005).

    Article  ADS  Google Scholar 

  12. A. V. Skazochkin, Yu. K. Krutogolov, and G. G. Bondarenko, Semicond. Sci. Technol. 11, 495 (1996).

    Article  ADS  Google Scholar 

  13. M. Zazoui, S. L. Feng, and J. C. Bourgoin, Semicond. Sci. Technol. 6, 973 (1991).

    Article  ADS  Google Scholar 

  14. N. A. Libo and Yu. K. Krutogolov, Fiz. Khim. Obrab. Mater., No. 3, 12 (1996).

    Google Scholar 

  15. T. J. Yu, T. Tanno, K. Suto, and J. Nishizawa, J. Electron. Mater. 31, 591 (2002).

    Article  ADS  Google Scholar 

  16. M. Jaros and S. Brand, Phys. Rev. B 14, 4494 (1976).

    Article  ADS  Google Scholar 

  17. M. J. Puska, J. Phys.: Condens. Matter 1, 7347 (1989).

    Article  ADS  Google Scholar 

  18. M. Scheffler, J. Bernholc, N. O. Lipari, and S. T. Pantelides, Phys. Rev. B 29, 3269 (1984).

    Article  ADS  Google Scholar 

  19. V. V. Novikov, Theoretical Basics of Microelectronics (Vyssh. Shkola, Moscow, 1972) [in Russian].

    Google Scholar 

  20. A. I. Kurnosov and V. V. Yudin, Technology of the Production of Semiconductor Devices and Integrated Micro-circuits (Vyssh. Shkola, Moscow, 1986) [in Russian].

    Google Scholar 

  21. R. Svolin, in Atomic Diffusion in Semiconductors, Ed. by D. Shaw (Plenum, London, New York, 1973; Mir, Moscow, 1975), p. 88.

    Google Scholar 

  22. H. Bracht, S. P. Nicols, E. E. Haller, J. P. Silveira, and F. Briones, J. Appl. Phys. 89, 5393 (2001).

    Article  ADS  Google Scholar 

  23. T. D. Brown and G. S. May, IEEE Trans. Semicond. Manufact. 18, 614 (2005).

    Article  Google Scholar 

  24. D. Wbiler and H. Mehrer, Phil. Mag. 49, 309 (1984).

    Article  Google Scholar 

  25. H. Hasy, in Atomic Diffusion in Semiconductors, Ed. by D. Shaw (Plenum, London, New York, 1973; Mir, Moscow, 1975), p. 406.

    Google Scholar 

  26. B. Goldstein, Phys. Rev. 121, 1305 (1961).

    Article  ADS  Google Scholar 

  27. V. B. Barkovand Yu. K. Krutogolov, Avt. svid. 1505354 (SSSR), Byul. Izobr. No. 5, 45 (1987).

    Google Scholar 

  28. J. S. Blakemore, Semiconductor Statistics (Pergamon, Oxford, London, New York, Paris, 1962; Mir, Moscow, 1964).

    MATH  Google Scholar 

  29. R. Krause-Rehberg, A. Polity, W. Siegel, and G. Kühnel, Semicond. Sci. Technol. 8, 290 (1993).

    Article  ADS  Google Scholar 

  30. J. A. Van Vechten, J. Electrochem. Soc. 122, 423 (1975). Translated by N. Korovin

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Krutogolov.

Additional information

Original Russian Text © Yu.K. Krutogolov, 2010, published in Fizika i Tekhnika Poluprovodnikov, 2010, Vol. 44, No. 6, pp. 782–789.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krutogolov, Y.K. Mechanism of compensation of the donor impurity in the near-surface layer of gap during heat treatment in phosphorus vapors. Semiconductors 44, 752–760 (2010). https://doi.org/10.1134/S1063782610060114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782610060114

Keywords

Navigation