Skip to main content
Log in

Photothermal Ionization Spectroscopy of Mercury Vacancies in HgCdTe Epitaxial Films

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The terahertz photoconductivity of narrow-gap Hg1 – xCdxTe alloys that originates from shallow double acceptors formed by mercury vacancies is investigated. The discrete spectrum of these acceptors and the matrix elements of the optical transitions from the ground to the excited states are calculated within a model taking into account the contribution from the conduction band and a model central-cell potential. Excited states with low ionization energies that are formed mainly by the states of light holes and are characterized by large matrix elements of optical transitions connecting them to the ground state are found. It is shown that the observed lines in the photoconductivity spectra are caused by transitions to these states for both neutral and singly ionized acceptors, rather than transitions to the valence-band continuum states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. Rogalski, Opto-Electron. Rev. 20, 279 (2012).

    Article  ADS  Google Scholar 

  2. D. L. Polla and C. E. Jones, J. Appl. Phys. 51, 6233 (1980).

    Article  ADS  Google Scholar 

  3. B. Li, Y. Gui, Z. Chen, H. Ye, J. Chu, S. Wang, R. Ji, and L. He, Appl. Phys. Lett. 73, 1538 (1998).

    Article  ADS  Google Scholar 

  4. S. H. Shin, M. Chu, A. H. B. Vanderwyck, M. Lanir, and C. C. Wang, J. Appl. Phys. 51, 3772 (1980).

    Article  ADS  Google Scholar 

  5. I. I. Izhnin, A. I. Izhnin, H. V. Savytskyy, O. I. Fitsych, N. N. Mikhailov, V. S. Varavin, S. A. Dvoretsky, Y. G. Sidorov, and K. D. Mynbaev, Opto-Electron. Rev. 20, 375 (2012).

    Article  ADS  Google Scholar 

  6. I. I. Izhnin, A. I. Izhnin, K. D. Mynbaev, N. L. Bazhenov, E. I. Fitsych, M. V. Yakushev, N. N. Mikhailov, V. S. Varavin, and S. A. Dvoretskii, Semiconductors 48, 195 (2014).

    Article  ADS  Google Scholar 

  7. K. D. Mynbaev, A. V. Shilyaev, N. L. Bazhenov, A. I. Izhnin, I. I. Izhnin, N. N. Mikhailov, V. S. Varavin, and S. A. Dvoretskii, Semiconductors 49, 367 (2015).

    Article  ADS  Google Scholar 

  8. F. Gemain, I. C. Robin, M. de Vita, S. Brochen, and A. Lusson, Appl. Phys. Lett. 98, 131901 (2011).

    Article  ADS  Google Scholar 

  9. F. Gemain, I. C. Robin, and G. Feuillet, J. Appl. Phys. 114, 213706 (2013).

    Article  ADS  Google Scholar 

  10. A. K. Ramdas and S. Rodriguez, Rep. Prog. Phys. 44, 1297 (1981).

    Article  ADS  Google Scholar 

  11. R. F. Kirkman, R. A. Stradling, and P. J. Lin-Chung, J. Phys. C: Solid State Phys. 11, 419 (1978).

    ADS  Google Scholar 

  12. D. V. Kozlov, V. V. Rumyantsev, S. V. Morozov, A. M. Kadykov, V. S. Varavin, N. N. Mikhailov, S. A. Dvoretsky, V. I. Gavrilenko, and F. Teppe, Semiconductors 49, 1605 (2015).

    Article  ADS  Google Scholar 

  13. V. V. Rumyantsev, D. V. Kozlov, S. V. Morozov, M. A. Fadeev, A. M. Kadykov, F. Teppe, V. S. Varavin, M. V. Yakushev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, Semicond. Sci. Technol. 32, 095007 (2017).

    Article  ADS  Google Scholar 

  14. T. A. Uaman Svetikova, A. V. Ikonnikov, V. V. Rumyantsev, D. V. Kozlov, V. I. Chernichkin, A. V. Galeeva, V. S. Varavin, N. N. Mikhailov, S. A. Dvoretskii, S. V. Morozov, and V. I. Gavrilenko, Semiconductors 53, 1266 (2019).

    Article  ADS  Google Scholar 

  15. I. D. Nikolaev, T. A. Uaman Svetikova, V. V. Rumyantsev, M. S. Zholudev, D. V. Kozlov, S. V. Morozov, S. A. Dvoretskii, N. N. Mikhailov, V. I. Gavrilenko, and A. V. Ikonnikov, JETP Lett. 111, 582 (2020).

    Article  ADS  Google Scholar 

  16. A. Kastalsky and J. C. M. Hwang, Solid State Commun. 51, 317 (1984).

    Article  ADS  Google Scholar 

  17. V. Ya. Aleshkin, V. I. Gavrilenko, D. M. Gaponova, A. V. Ikonnikov, K. V. Marem’yanin, S. V. Morozov, Yu. G. Sadof’ev, S. R. Johnson, and Y.-H. Zhang, Semiconductors 39, 22 (2005).

    Article  ADS  Google Scholar 

  18. K. E. Spirin, D. M. Gaponova, K. V. Marem’yanin, V. V. Rumyantsev, V. I. Gavrilenko, N. N. Mikhailov, and S. A. Dvoretskii, Semiconductors 52, 1586 (2018).

    Article  ADS  Google Scholar 

  19. V. S. Varavin, V. V. Vasiliev, S. A. Dvoretsky, N. N. Mikhailov, V. N. Ovsyuk, Yu. G. Sidorov, A. O. Suslyakov, M. V. Yakushev, and A. L. Aseev, in Solid State Crystals 2002: Crystalline Materials for Optoelectronics, Proc. SPIE 5136, 381 (2003).

    Article  ADS  Google Scholar 

  20. P. A. Bakhtin, S. A. Dvoretskii, V. S. Varavin, A. P. Korobkin, N. N. Mikhailov, I. V. Sabinina, and Yu. G. Sidorov, Semiconductors 38, 1172 (2004).

    Article  ADS  Google Scholar 

  21. N. O. Lipary, A. Baldereschi, and M. L. W. Thewalt, Solid State Commun. 33, 277 (1980).

    Article  ADS  Google Scholar 

  22. M. Said and M. A. Kanehisa, Phys. Status Solidi B 157, 311 (1990).

    Article  ADS  Google Scholar 

  23. E. G. Novik, A. Pfeuffer-Jeschke, T. Jungwirth, V. Latussek, C. R. Becker, and G. Landwehr, Phys. Rev. B 72, 035321 (2005).

    Article  ADS  Google Scholar 

  24. J. Sak, Phys. Status Solidi 27, 521 (1968).

    Article  Google Scholar 

  25. M. H. Engineer and N. Tzoar, Phys. Rev. B 5, 3029 (1972).

    Article  ADS  Google Scholar 

  26. B. Hönelage, U. Rössler, and U. Schöder, Phys. Rev. B 12, 2355 (1975).

    Article  ADS  Google Scholar 

  27. D. V. Kozlov, V. V. Rumyantsev, S. V. Morozov, A. M. Kadykov, M. A. Fadeev, H.-W. Hubers, and V. I. Gavrilenko, Semiconductors 52, 1369 (2018).

    Article  ADS  Google Scholar 

  28. H. Bethe and E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer, Berlin, 1957).

    Book  Google Scholar 

  29. H. W. H. M. Jongbloets, M. J. H. van de Steeg, J. H. M. Stoelinga, and P. Wyder, J. Phys. C: Solid State Phys. 13, 2139 (1980).

    Article  ADS  Google Scholar 

  30. V. Ya. Aleshkin, A. V. Antonov, V. I. Gavrilenko, L. V. Gavrilenko, and B. N. Zvonkov, J. Exp. Theor. Phys. 109, 466 (2009).

    Article  ADS  Google Scholar 

  31. D. E. Hill, J. Appl. Phys. 41, 1815 (1970).

    Article  ADS  Google Scholar 

  32. D. N. Talwar and M. Vandevyver, J. Appl. Phys. 56, 1601 (1984).

    Article  ADS  Google Scholar 

  33. E. E. Haller and W. L. Hansen, Solid State Commun. 15, 687 (1974).

    Article  ADS  Google Scholar 

  34. C. Jagannath, Z. W. Grabowski, and A. K. Ramdas, Phys. Rev. B 23, 2082 (1981).

    Article  ADS  Google Scholar 

  35. V. N. Murzin, Submillimeter Spectroscopy of Collective and Bound States of Current Carriers in Semiconductors (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  36. V. V. Rumyantsev, S. V. Morozov, K. E. Kudryavtsev, V. I. Gavrilenko, and D. V. Kozlov, Semiconductors 46, 1387 (2012).

    Article  ADS  Google Scholar 

  37. V. N. Shastin, R. Kh. Zhukavin, K. A. Kovalevsky, V. V. Tsyplenkov, V. V. Rumyantsev, D. V. Shengurov, S. G. Pavlov, V. B. Shuman, L. M. Portsel, A. N. Lodygin, Yu. A. Astrov, N. V. Abrosimov, J. M. Klopf, and H.-W. Hubers, Semiconductors 53, 1234 (2019).

    Article  ADS  Google Scholar 

  38. Sh. M. Kogan and T. M. Lifshits, Phys. Status Solidi A 39, 11 (1977).

    Article  ADS  Google Scholar 

  39. H. W. H. M. Jongbloets, J. H. M. Stoelinga, M. J. H. vande Steeg, and P. Wyder, Phys. Rev. B 20, 3328 (1979).

    Article  ADS  Google Scholar 

  40. M. Franz, K. Pressel, and P. Gaworzewski, J. Appl. Phys. 84, 709 (1998).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and   Higher Education, project no. 075-15-2020-797 (13.1902.21.0024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Rumyantsev.

Additional information

Translated by M. Skorikov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, D.V., Uaman Svetikova, T.A., Ikonnikov, A.V. et al. Photothermal Ionization Spectroscopy of Mercury Vacancies in HgCdTe Epitaxial Films. Jetp Lett. 113, 402–408 (2021). https://doi.org/10.1134/S0021364021060072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021060072

Navigation