Skip to main content
Log in

Light-emitting Si nanostructures formed in SiO2 on irradiation with swift heavy ions

  • Fabrication, Treatment, and Testing of Materials and Structures
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

SiO2 layers containing implanted excess Si are irradiated with Xe ions with an energy of 130 MeV and doses of 3 × 1012–1014 cm−2. In the samples irradiated with a dose of 3 × 1012 cm−2, ∼1012 cm−2 segregated clusters 3–4 nm in dimension are detected by transmission electron microscopy. With increasing dose, the dimensions and number of these clusters increase. In the photoluminescence spectrum, a 660- to 680-nm band is observed, with the intensity dependent on the dose. After passivation of the sample with hydrogen at 500°C, the band disappears, but a new ∼780-nm band typical of Si nanocrystals becomes evident. On the basis of the entire set of data, it is concluded that the 660- to 680-nm band is associated with imperfect Si nanocrystals grown in the tracks of Xe ions due to high ionization losses. The nonmonotonic dependence of the photoluminescence intensity on the dose is attributed to the difference between the diameters of tracks and the diameters of the displacements’ cascades responsible for defect formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Kachurin, I. E. Tyschenko, K. S. Zhuravlev, N. A. Pazdnikov, V. A. Volodin, A. K. Gutakovsky, A. F. Leier, W. Skorupa, and R. A. Yankov, Nucl. Instrum. Methods Phys. Res. B 112, 571 (1997).

    Article  Google Scholar 

  2. G. A. Kachurin, S. G. Cherkova, D. V. Marin, R. A. Yankov, and M. Deutschmann, Nanotechnology 19, 355 305 (2008).

    Article  Google Scholar 

  3. M. Toulemonde, Ch. Dufour, A. Meftah, and E. Paumier, Nucl. Instrum. Methods Phys. Res. B 166–167, 903 (2000).

    Article  Google Scholar 

  4. H. Hosono, K. Kawamura, Y. Kameshima, H. Kawazoe, N. Matsunami, and K. Muta, J. Appl. Phys. 82, 4232 (1997).

    Article  ADS  Google Scholar 

  5. R. L. Fleischer, P. B. Price, and R. M. Walker, J. Appl. Phys. 36, 3645 (1965); A. Benyagoub, Nucl. Instrum. Methods Phys. Res. B 245, 225 (2006).

    Article  ADS  Google Scholar 

  6. D. Rodichev, Ph. Lavallard, E. Dooryhee, A. Slaoui, J. Perriere, M. Gandais, and Y. Wang, Nucl. Instrum. Methods Phys. Res. B 259 (1996).

  7. P. S. Chaudhari, T. M. Bhave, D. Kanjilal, and S. V. Bhoraskar, J. Appl. Phys. 93, 3486 (2003).

    Article  ADS  Google Scholar 

  8. P. S. Chaudhari, T. M. Bhave, R. Pasricha, F. Singh, D. Kanjilal, and S. V. Bhoraskar, Nucl. Instrum. Methods Phys. Res. B 239, 185 (2005).

    Article  ADS  Google Scholar 

  9. W. M. Arnoldbik, N. Tomozeiu, E. D. van Hattum, R.W. Lof, A. M. Vredenberg, and F. H. P. M. Habraken, Phys. Rev. B 71, 125329 (2005).

    Article  ADS  Google Scholar 

  10. B. Garrido Fernandez, M. Lopez, C. Garcia, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, J. Appl. Phys. 91, 798 (2002).

    Article  ADS  Google Scholar 

  11. M. Lopez, B. Garrido, C. Bonafos, A. Perez-Rodriguez, J. R. Morante, and A. Claverie, Nucl. Instrum. Methods Phys. Res. B 178, 89 (2001).

    Article  ADS  Google Scholar 

  12. G. A. Kachurin, S. G. Yanovskaya, M.-O. Buault, A. K. Gutakovskii, K. S. Zhuravlev, O. Kaitasov, and H. Bernas, Fiz. Tekh. Poluprovodn. 34, 1004 (2000) [Semiconductors 34, 965 (2000)].

    Google Scholar 

  13. S. Cheylan, N. Langford, and R. G. Elliman, Nucl. Instrum. Methods Phys. Res. B 166–167, 851 (2000).

    Article  Google Scholar 

  14. D. Pacifici, E. C. Moreira, G. Franzo, V. Martorino, and F. Priolo, Phys. Rev. B 65, 144 (109) (2002).

    Article  Google Scholar 

  15. P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, L. Meda, E. Grilli, and M. Guzzi, Appl. Phys. Lett. 66, 851 (1995).

    Article  ADS  Google Scholar 

  16. G. Ghislotti, B. Nielsen, P. Asoka-Kumar, K. G. Lynn, A. Gambhir, L. F. Di Mauro, and C. E. Bottani, J. Appl. Phys. 79, 8660 (1996).

    Article  ADS  Google Scholar 

  17. S. P. Withrow, C. W. White, A. Meldrum, J. D. Budai, D. M. Hembree, Jr., and J. C. Barbour, J. Appl. Phys. 86, 396 (1999).

    Article  ADS  Google Scholar 

  18. Y. Batra, T. Mohanty, and D. Kanjilal, Nucl. Instrum. Methods Phys. Res. B 266, 3107 (2008).

    Article  ADS  Google Scholar 

  19. Y.-J. Jung, J.-H. Yoon, R. G. Elliman, and A. R. Wilkinson, J. Appl. Phys. 104, 083 (518) (2008).

    Google Scholar 

  20. I. Kaiser, N. H. Nickel, W. Fuhs, and W. Pilz, Phys. Rev. B 58, R1718 (1998).

    Article  ADS  Google Scholar 

  21. G. A. Kachurin, S. G. Cherkova, D. V. Marin, A. K. Kutakovskii, A. G. Cherkov, and V. A. Volodin, Fiz. Tekh. Poluprovodn. 42, 1145 (2008) [Semiconductors 42, 1127 (2008)].

    Google Scholar 

  22. M. Lannoo, C. Delerue, and G. Allan, J. Luminesc. 70, 170 (1996).

    Article  Google Scholar 

  23. J. F. Gibbons, Proc. IEEE 60, 1062 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Kachurin.

Additional information

Original Russian Text © G.A. Kachurin, S.G. Cherkova, V.A. Skuratov, D.V. Marin, A.G. Cherkov, 2010, published in Fizika i Tekhnika Poluprovodnikov, 2010, Vol. 44, No. 4, pp. 544–549.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kachurin, G.A., Cherkova, S.G., Skuratov, V.A. et al. Light-emitting Si nanostructures formed in SiO2 on irradiation with swift heavy ions. Semiconductors 44, 525–530 (2010). https://doi.org/10.1134/S1063782610040202

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782610040202

Keywords

Navigation