Skip to main content
Log in

Improvement Spectral Responsivity of TiO2 Nanoparticles via Pulsed Laser Deposition Deposited on Silicon Nanostructures

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In the present work, we used a pulsed laser deposition technique to embed TiO2 nanostructure on porous silicon substrates using a pulsed laser deposition process. Nanocrystalline porous silicon was synthesized using the photo-assisted electrochemical method. The study analyzed the optoelectronic characteristics of double junctions of TiO2/PS/n-Si structures as well as the PS/n-Si structure. We investigated the properties of TiO2/PS/n-Si and PS/n-Si structures, focusing on their structural, optical, and electrical features under ambient conditions. The XRD measurement indicated the formation of the anatase and rutile tetragonal phases with the preferred orientation anatase (101) plane in the prepared sample. The mean sizes of The TiO2 nanostructures deposited onto porous silicon substrates range from 45.97 to 109.23 nm. The degree of pore filling depends upon the laser fluences employed, varying from moderate to close to complete packing. The optical properties of TiO2/PS/n-Si structures showed decreasing reflectance after depositing on porous silicon. The TiO2 nanostructure produced on porous silicon exhibits five different spectra in the UV and visible range, as displayed in the room-temperature photoluminescence analysis. The current density–voltage characteristics of formed samples in dark and photoilluminated conditions are examined at room temperature. The properties of the TiO2/PS/n-Si structure enhance those of the PS/n-Si device. The highest specific detectivity of the TiO2/PS/n-Si devices is 32.45 × 1010 Jones in the visible region, while the ultraviolet region is 30.04 × 1010 Jones. The TiO2/PS/n-Si photodetectors possess an optimal relative quantum efficiency of 80.1% in the near UV region, whereas, in the visible range, the values of relative quantum efficiency are 51.8% at 531 nm and 54.5% at 634 nm. The findings reveal that formed photodetectors exhibit UV and visible light sensitivity after depositing TiO2 layers on porous silicon. However, the photodetectors produced using TiO2 nanostructures placed on porous silicon demonstrate greater sensitivity than those made from as-synthesized porous silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Choudhuri B, Mondal A, Dwivedi SMMD, Henini M (2017) Fabrication of novel transparent Co3O4-TiO2 nanowires p-n heterojunction diodes for multiband photodetection applications. J Alloy Compd 712:7–14. https://doi.org/10.1016/j.jallcom.2017.04.068

    Article  CAS  Google Scholar 

  2. Jabir MS, Rashid TM, Nayef UM, Albukhaty S, Almalki FA, Albaqami J, … Sulaiman GM (2022) Inhibition of staphylococcus aureus α-hemolysin production using nanocurcumin capped Au@ZnO nanocomposite. Bioinorg Chem Appl 2022. https://doi.org/10.1155/2022/2663812

  3. Tian W, Lu H, Li L (2015) Nanoscale ultraviolet photodetectors based on onedimensional metal oxide nanostructures. Nano Res 8(2):382–405. https://doi.org/10.1007/s12274-014-0661-2

    Article  CAS  Google Scholar 

  4. Khudiar SS, Nayef UM, Mutlak FAH (2021) Improvement of spectral responsivity of ZnO nanoparticles deposited on porous silicon via laser ablation in liquid. Optik 244(May):167530. https://doi.org/10.1016/j.ijleo.2021.167530

    Article  CAS  Google Scholar 

  5. Hamdan SA, Ibrahim IM, Ali IM (2021) Photodetector based on Rutile and Anatase TiO2 nanostructures/n-Si Heterojunction. J Phys: Conf Ser 2114(1):012025. https://doi.org/10.1088/1742-6596/2114/1/012025

    Article  Google Scholar 

  6. Rodríguez DF, Perillo PM (2023) Ultra-fast TiO2 nanopores broadband photodetector. Opt Mater 135(December 2022):5–9. https://doi.org/10.1016/j.optmat.2022.113315

    Article  CAS  Google Scholar 

  7. Agrohiya S, Kumar V, Rawal I, Dahiya S, Goyal PK, Kumar V, Punia R (2022) Fabrication of n-TiO2/p-Si photo-diodes for self-powered fast ultraviolet photodetectors. SILICON 14(17):11891–11901. https://doi.org/10.1007/s12633-022-01913-2

    Article  CAS  Google Scholar 

  8. Alhomoudi IA, Newaz G (2009) Residual stresses and Raman shift relation in anatase TiO2 thin film. Thin Solid Films 517(15):4372–4378. https://doi.org/10.1016/j.tsf.2009.02.141

    Article  CAS  Google Scholar 

  9. Dariani RS, Faraji F (2016) Electrical properties comparison of TiO2/PS/Si devices fabricated by spin coating and electron beam gun. Appl Phys A 122(4):281. https://doi.org/10.1007/s00339-016-9899-8

    Article  CAS  Google Scholar 

  10. Jwied DH, Nayef UM, Mutlak FAH (2021) Synthesis of C:Se nanoparticles ablated on porous silicon for sensing NO2 and NH3 gases. Optik 241(March). https://doi.org/10.1016/j.ijleo.2021.167013

  11. Khudiar SS, Nayef UM, Mutlak FAH (2021) Preparation and characterization of ZnO nanoparticles via laser ablation for sensing NO2 gas. Optik 246(2):167762. https://doi.org/10.1016/j.ijleo.2021.167762

    Article  CAS  Google Scholar 

  12. Jhaveri J (2018) Interface recombination in TiO 2/silicon heterojunctions for silicon photovoltaic applications. Doctoral dissertation, Princeton University

  13. Wang J, Yang J, Zhao Y, Wang G (2020) Photoelectrochemical properties of porous Si/TiO2Nanowire heterojunction structure. J Nanomater 2020. https://doi.org/10.1155/2020/9629807

  14. Wang D, Yan Y, Schaaf P, Sharp T, Schönherr S, Ronning C, Ji R (2015) ZnO/porous-Si and TiO2/porous-Si nanocomposite nanopillars. J Vacuum Sci Technol A: Vacuum Surf Films 33(1). https://doi.org/10.1116/1.4891104

  15. Slav A (2011) Optical characterization of TiO2-Ge nanocomposite films obtained by reactive magnetron sputtering. Dig J Nanomater Biostruct 6(3):915–920

    Google Scholar 

  16. Shi J, Wang X (2011) Growth of rutile titanium dioxide nanowires by pulsed chemical vapor deposition. Cryst Growth Des 11(4):949–954. https://doi.org/10.1021/cg200140k

    Article  CAS  Google Scholar 

  17. Mutlak FAH, Taha AB, Nayef UM (2018) Synthesis and characterization of SnO2 on porous silicon for photoconversion. SILICON 10(3):967–974. https://doi.org/10.1007/s12633-017-9554-9

    Article  CAS  Google Scholar 

  18. Uysal BÖ, Arier ÜÖA (2015) Structural and optical properties of SnO 2 nano films by spin-coating method. Appl Surf Sci 350:74–78. https://doi.org/10.1016/j.apsusc.2015.04.023

    Article  CAS  Google Scholar 

  19. Eom K, Kim T, Seo J, Choi J, Lee J (2014) Effect of laser fluence on electrical properties of (Sr0.75, La0.25)TiO3 thin films grown by pulsed-laser-deposition. J Nanosci Nanotechnol 14(11):8762–8765. https://doi.org/10.1166/jnn.2014.10012

    Article  CAS  PubMed  Google Scholar 

  20. Zhou X, Zhou X (2022) Pulsed laser deposition preparation and laser-induced voltage signals of TiO2 thin films. Thin Solid Films 756(February):139375. https://doi.org/10.1016/j.tsf.2022.139375

    Article  CAS  Google Scholar 

  21. Kargan NH, Aliahmad M, Azizi S (2012) Detecting ultra-violet radiation by using titanium dioxide nanoparticles. Soft Nanosci Lett 02(03):29–33. https://doi.org/10.4236/snl.2012.23006

    Article  CAS  Google Scholar 

  22. Janene N, Hajjaji A, Ben Rabha M, El Khakani MA, Bessais B, Gaidi M (2012) Influence of porous silicon passivation layer and TiO 2 coating on the optoelectronic properties of multicrystalline Si substrate. Phys Status Solidi (C) Curr Top Solid State Phys 9(10–11):2141–2144. https://doi.org/10.1002/pssc.201200234

    Article  CAS  Google Scholar 

  23. Banerjee D, Asuo IM, Pignolet A, Nechache R, Cloutier SG (2020) High performance photodetectors using porous silicon-TiO2 heterostructure. Eng Res Express 2(3):035021. https://doi.org/10.1088/2631-8695/abb06d

    Article  Google Scholar 

  24. Akhavan Sadr F, Montazer M (2014) In situ sonosynthesis of nano TiO2 on cotton fabric. Ultrason Sonochem 21(2):681–691. https://doi.org/10.1016/j.ultsonch.2013.09.018

    Article  CAS  PubMed  Google Scholar 

  25. Violini MA, Hernández MF, Conconi MS, Suárez G, Rendtorff NM (2021) A dynamic analysis of the aluminum titanate (Al2TiO5) reaction-sintering from alumina and titania, properties and effect of alumina particle size. J Therm Anal Calorim 143(1):95–101. https://doi.org/10.1007/s10973-020-09284-9

    Article  CAS  Google Scholar 

  26. Kitazawa SI, Choi Y, Yamamoto S (2004) In situ optical spectroscopy of PLD of nano-structured TiO2. Vacuum 74(3–4 SPEC. ISS.):637–642. https://doi.org/10.1016/j.vacuum.2004.01.048

    Article  CAS  Google Scholar 

  27. Sharma AK, Thareja RK, Willer U, Schade W (2003) Phase transformation in room temperature pulsed laser deposited TiO 2 thin films. Appl Surf Sci 206(1–4):137–148. https://doi.org/10.1016/S0169-4332(02)01194-7

    Article  CAS  Google Scholar 

  28. Nayef UM, Khudhair IM (2017) Study of porous silicon humidity sensor vapors by photoluminescence quenching for organic solvents. Optik 135:169–173. https://doi.org/10.1016/j.ijleo.2017.01.060

    Article  CAS  Google Scholar 

  29. Khudiar SS, Nayef UM, Mutlak FAH, Abdulridha SK (2022) Characterization of NO2 gas sensing for ZnO nanostructure grown hydrothermally on porous silicon. Optik 249(2):168300. https://doi.org/10.1016/j.ijleo.2021.168300

    Article  CAS  Google Scholar 

  30. Saranya A, Pandiarajan J, Prithivikumaran N (2016) Synthesis and characterization of TiO2/PS nano structure for sensor applications. Inter J Tech Res App 38:57–60

    Google Scholar 

  31. Hadi AJ, Nayef UM, Jabir MS, Mutlak FAH (2023) Laser-ablated tin dioxide nanoparticle synthesis for enhanced biomedical applications. Plasmonics (0123456789). https://doi.org/10.1007/s11468-023-01888-9

  32. Razali NSM, Rahim AFA, Radzali R, Mahmood A, Yusuf Y, Zulkifli F, Bakar AA (2019) Investigation on the effect of direct current and integrated pulsed electrochemical etching of N-type (100) silicon. Acta Phys Pol A 135(4):697–701. https://doi.org/10.12693/APhysPolA.135.697

    Article  CAS  Google Scholar 

  33. Thahab SM (2011) Preparation and structural characterizations of ZnO nano-columns grown on porous silicon/silicon (PS/ Si (111)) by thermal evaporation. Optoelectron Adv Mater Rapid Commun 5(10):1107–1110

    CAS  Google Scholar 

  34. Tsoutsouva MG, Panagopoulos CN, Kompitsas M (2011) Laser energy density, structure and properties of pulsed-laser deposited zinc oxide films. Appl Surf Sci 257(14):6314–6319. https://doi.org/10.1016/j.apsusc.2011.02.073

    Article  CAS  Google Scholar 

  35. Zhu BL, Zhao XZ, Su FH, Li GH, Wu XG, Wu J … Liu J (2007) Structural and optical properties of ZnO thin films on glass substrate grown by laser-ablating Zn target in oxygen atmosphere. Phys B: Condens Matter 396(1–2):95–101. https://doi.org/10.1016/j.physb.2007.03.018

  36. Venkatachalam S, Kanno Y (2009) Preparation and characterization of nano and microcrystalline ZnO thin films by PLD. Curr Appl Phys 9(6):1232–1236. https://doi.org/10.1016/j.cap.2009.02.003

    Article  Google Scholar 

  37. Hadi AJ, Nayef UM, Jabir MS, Mutlak FA-H (2023) Titanium dioxide nanoparticles prepared via laser ablation: evaluation of their antibacterial and anticancer activity. Surf Rev Lett. https://doi.org/10.1142/S0218625X2350066X

    Article  Google Scholar 

  38. Nayef UM, Hadi AJ, Abdulridha SK, Mutlak FAH, Ahmed AF (2022) Tin dioxide nanoparticles synthesized via laser ablation in various liquids medium. J Opt (India). https://doi.org/10.1007/s12596-022-00913-0

    Article  Google Scholar 

  39. Balakrishnan G, Bandi VR, Rajeswari SM, Balamurugan N, Babu RV, Song JI (2013) Effect of oxygen partial pressure on microstructural and optical properties of titanium oxide thin films prepared by pulsed laser deposition. Mater Res Bull 48(11):1901–1906. https://doi.org/10.1016/j.materresbull.2013.07.009

    Article  CAS  Google Scholar 

  40. Nasri R, Kayed K, Al-Ourabi H (2019) Spectroscopic study of titanium dioxide thin films prepared by pulsed laser deposition. Int J Nanoelectron Mater 12(2):251–256

    Google Scholar 

  41. Dhandayuthapani T, Sivakumar R, Ilangovan R, Gopalakrishnan C, Sanjeeviraja C, Sivanantharaja A, Krishna RH (2018) Efficient electrochromic performance of anatase TiO2 thin films prepared by nebulized spray deposition method. J Solid State Electrochem 22(6):1825–1838. https://doi.org/10.1007/s10008-018-3888-0

    Article  CAS  Google Scholar 

  42. Koca M, Kudaş Z, Ekinci D, Aydoğan (2021) Performance improvement of n-TiO2/p-Si heterojunction by forming of n-TiO2/polyphenylene/p-Si anisotype sandwich heterojunction. Mater Sci Semicond Process 121(September 2020). https://doi.org/10.1016/j.mssp.2020.105436

  43. Kayahan E (2010) White light luminescence from annealed thin ZnO deposited porous silicon. J Lumin 130(7):1295–1299. https://doi.org/10.1016/j.jlumin.2010.02.042

    Article  CAS  Google Scholar 

  44. Nayef UM (2017) Improve the efficiency of UV-detector by modifying the Si and porous silicon substrate with ZnS thin films. Optik 130:441–447. https://doi.org/10.1016/j.ijleo.2016.10.077

    Article  CAS  Google Scholar 

  45. Oussidhoum S, Hocine D, Chaumont D, Crisbasan A, Bensidhoum M, Bourennane E … Belkaid MS (2019) Optimization of physicochemical and optical properties of nanocrystalline TiO2 deposited on porous silicon by metal-organic chemical vapor deposition (MOCVD). Mater Res Express 6(12):0–9. https://doi.org/10.1088/2053-1591/ab6539

  46. Liqiang J, Xiaojun S, Weimin C, Zili X, Yaoguo D, Honggang F (2003) The preparation and characterization of nanoparticle TiO2/Ti films and their photocatalytic activity. J Phys Chem Solids 64(4):615–623. https://doi.org/10.1016/S0022-3697(02)00362-1

    Article  Google Scholar 

  47. Solati E, Aghazadeh Z, Dorranian D (2020) Effects of liquid ablation environment on the characteristics of TiO2 nanoparticles. J Clust Sci 31(5):961–969. https://doi.org/10.1007/s10876-019-01701-w

    Article  CAS  Google Scholar 

  48. Singh SC, Swarnkar RK, Gopal R (2009) Synthesis of titanium dioxide Nanomaterial by pulsed laser ablation in water. J Nanosci Nanotechnol 9:5367–5371. https://doi.org/10.1166/jnn.2009.1114

    Article  CAS  PubMed  Google Scholar 

  49. Khalifa M, Hajji M, Ezzaouia H (2012) Purification of silicon powder by the formation of thin porous layer followed by photo-thermal annealing. Nanoscale Res Lett 7. https://doi.org/10.1186/1556-276X-7-444

  50. Vásquez-A MA, Águila Rodríguez G, García-Salgado G, Romero-Paredes G, Peña-Sierra R (2007) Ftir and photoluminescence studies of porous silicon layers oxidized in controlled water vapor conditions. Rev Mex Fís. 53(6):431–435

    Google Scholar 

  51. Nayef UM, Khudhair IM, Kayahan E (2017) Organic vapor sensor using photoluminescence of laser ablated gold nanoparticles on porous silicon. Optik 144:546–552. https://doi.org/10.1016/j.ijleo.2017.07.017

    Article  CAS  Google Scholar 

  52. Nayef UM, Khudhair IM (2018) Synthesis of gold nanoparticles chemically doped with porous silicon for organic vapor sensor by using photoluminescence. Optik 154:398–404. https://doi.org/10.1016/j.ijleo.2017.10.061

    Article  CAS  Google Scholar 

  53. Ngamou PHT, Overbeek JP, Kreiter R, Van Veen HM, Vente JF, Wienk IM … Creatore M (2013) Plasma-deposited hybrid silica membranes with a controlled retention of organic bridges. J Mater Chem A 1(18):5567–5576. https://doi.org/10.1039/c3ta00120b

  54. Hussein HT, Nayef UM, Hussien AMA (2019) Synthesis of graphene on porous silicon for vapor organic sensor by using photoluminescence. Optik 180:61–70. https://doi.org/10.1016/j.ijleo.2018.10.222

    Article  CAS  Google Scholar 

  55. Nayef UM, Hussein HT, Abdul Hussien AM (2018) Study of photoluminescence quenching in porous silicon layers that using for chemical solvents vapor sensor. Optik 172:1134–1139. https://doi.org/10.1016/j.ijleo.2018.07.112

    Article  CAS  Google Scholar 

  56. Juarez MF, Patrito EM, Paredes-Olivera P (2009) Quantum mechanical investigation of the influence of the local environment on the vibrational properties of hydrogenated Si(111). J Phys Chem C 113(2):681–690. https://doi.org/10.1021/jp808104f

    Article  CAS  Google Scholar 

  57. Hwang JD, Chou CH (2010) On the origin of leakage current reduction in TiO2 passivated porosus silicon Schottky-barrier diode. Appl Phys Lett 96(6):10–13. https://doi.org/10.1063/1.3309717

    Article  CAS  Google Scholar 

  58. Chabane L, Zebbar N, Trari M, Seba YH, Kechouane M (2021) Electrical study of ZnO film thickness effect on the evolution of interface potential barrier of ZnO/p-Si heterojunction: contribution to transport phenomena study. Mater Sci Semicond Process 133(January):105971. https://doi.org/10.1016/j.mssp.2021.105971

    Article  CAS  Google Scholar 

  59. Dariani RS, Zabihipour M (2016) Effect of electrical behavior of ZnO microparticles grown on porous silicon substrate. Appl Phys A: Mater Sci Process 122(12). https://doi.org/10.1007/s00339-016-0516-7

  60. Sze SM, Ng KK (2006) Physics of semiconductor devices. Wiley. https://doi.org/10.1002/0470068329

  61. Ismail RA (2012) Structural and electrical properties of CdO/porous-Si heterojunction. Iraqi J Phys 10(18):76–85

    Google Scholar 

  62. Jwied DH, Nayef UM, Mutlak FAH (2021) Synthesis of C: Se (core:shell) nanoparticles via laser ablation on porous silicon for photodetector application. Optik 231(December 2020):166493. https://doi.org/10.1016/j.ijleo.2021.166493

    Article  CAS  Google Scholar 

  63. Das M, Sarmah S, Barman D, Sarma BK, Sarkar D (2020) Distinct band UV–Visible photo sensing property of ZnO-Porous silicon (PS):p-Si hybrid MSM heterostructure. Mater Sci Semicond Process 118. https://doi.org/10.1016/j.mssp.2020.105188

  64. Jwied DH, Mutlak FA, Nayef UM (2021) Improvement of responsivity of C: Se nanoparticles ablated on porous silicon. Optik 241(April). https://doi.org/10.1016/j.ijleo.2021.167222

  65. Kamel RI, Ahmed DS, Nayef UM (2019) Synthesis of Bi2O3 nanoparticles by laser ablation on porous silicon for photoconversion application. Optik 193(April):163013. https://doi.org/10.1016/j.ijleo.2019.163013

    Article  CAS  Google Scholar 

  66. Ali HM, Makki SA, Abd AN (2018) Enhanced photo-response of porous silicon photo-detectors by embeddingTitanium-dioxide nano-particles. J Phys: Conf Ser 1003. https://doi.org/10.1088/1742-6596/1003/1/012073

  67. Hadi HA, Ismail RA (2022) Preparation and characteristics study of high-quantum efficiency Ni/PSi/c-Si and cd/PSi/c-Si double-junction photodetectors. SILICON 14(17):11089–11096. https://doi.org/10.1007/s12633-022-01845-x

    Article  CAS  Google Scholar 

  68. Abdulkhaleq NA, Hasan AK, Nayef UM (2020) Enhancement of photodetectors devices for silicon nanostructure from study effect of etching time by photoelectrochemical etching technique. Optik 206:164325. https://doi.org/10.1016/j.ijleo.2020.164325

  69. Salih EY, Bashir MBA, Rajpar AH, Badruddin IA, Bahmanrokh G (2022) Rapid fabrication of NiO/porous Si film for ultra-violate photodetector: the effect of laser energy. Microelectron Eng 258(March):111758. https://doi.org/10.1016/j.mee.2022.111758

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of Technology-Iraq for the logistic support this work.

Funding

No funded.

Author information

Authors and Affiliations

Authors

Contributions

Ali J. Hadi-Writing Original draft, Methodology, Investigation, and Formal analysis. Uday M. Nayef, Falah A-H Mutlak-Main Concept, Data interpretation, and supervision. Majid S. Jabir-Writing-Review and editing, Visualization, and Data curation.

Corresponding author

Correspondence to Uday M. Nayef.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadi, A.J., Nayef, U.M., Mutlak, F.AH. et al. Improvement Spectral Responsivity of TiO2 Nanoparticles via Pulsed Laser Deposition Deposited on Silicon Nanostructures. Silicon (2024). https://doi.org/10.1007/s12633-024-03007-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12633-024-03007-7

Keywords

Navigation