Skip to main content
Log in

Numerical simulation of hydrogenation of GaAs at the cooling stage

  • Atomic Structure and Nonelectronic Propertties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Evolution of concentration profiles of all types of hydrogen particles, charge carriers, active doping impurity, and distribution of the electric field in the near-surface layer of hydrogenated p-GaAs during cooling the sample after finishing the stage of introduction of hydrogen is simulated. It is shown that the form of final concentration profiles of hydrogen-containing particles and distribution of the intrinsic electric field in the hydrogenated p-GaAs layer depend on the temperature-time mode of cooling the sample. The degree of the effect of the cooling rate on the final state of hydrogenated layer increases as the doping level of semiconductor is decreased. Systematic features of formation of the final state of the hydrogen-crystal system depending on the cooling rate of the sample are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Pearton, J. W. Corbett, and M. Stavola, Hydrogen in Crystalline Semiconductors (Springer, 1991) p. 374.

  2. F. P. Korshunov, N. F. Kurilovich, T. A. Prokhorenko, V. K. Shesholko, and Yu. A. Bumai, Vopr. At. Nauki Tekhn. 2, 38 (2001).

    Google Scholar 

  3. I. A. Karpovich, A. V. Anshon, and D. O. Filatov, Fiz. Tekh. Poluprovodn. 32, 1089 (1998) [Semiconductors 32, 975 (1998)].

    Google Scholar 

  4. Yu. A. Bumai, G. Gobsh, R. Gol’dkhan, N. Shtain, A. Golombek, V. Nakov, and T. S. Cheng, Fiz. Tekh. Poluprovodn. 36, 211 (2002) [Semiconductors 36, 203 (2002)].

    Google Scholar 

  5. M. Geddo, R. Pezzuto, M. Capizzi, A. Polimeni, D. Gollub, M. Fischer, and A. Forchel, Eur. Phys. J. B 30, 39 (2002).

    Article  ADS  Google Scholar 

  6. G. Pettinari, F. Masia, A. Polimeni, M. Felici, A. Frova, M. Capizzi, A. Lindsay, E. P. O’Reilly, P. J. Klar, and W. Stolz, Phys. Rev. B 74, 245 (202) (2006).

    Article  Google Scholar 

  7. Yao Yan-Ping, Liu Chun-Ling, Qiao Zhong-Liang, Li Mei, Gao Xin, and Bo Bao-Xue, Chin. Phys. Lett. 25, 1071 (2008).

    Article  ADS  Google Scholar 

  8. B. Herzog, B. Raabe, and G. Hahn, in Proc. 22nd Eur. Photovoltaic Solar Energy Conf. (Milan, 2007), p. 1722.

  9. H. G. Svavarsson1, D. M. Danielsson, and J. T. Gudmundsson, in Proc. 23rd Eur. Photovoltaic Solar Energy Conf. (Valencia, 2008), p. 2221.

  10. V. G. Bozhkov, V. A. Kagadei, and N. A. Torkhov, Fiz. Tekh. Poluprovodn. 32, 1343 (1998) [Semiconductors 32, 1196 (1998)].

    Google Scholar 

  11. U. P. Singh, Bull. Mater. Sci. 21, 155 (1998).

    Article  Google Scholar 

  12. V. A. Kagadei, E. V. Nefedtsev, D. I. Proskurovskii, S. V. Romanenko, and L. S. Shirokova, Pis’ma Zh. Tekh. Fiz. 29, 27 (2003) [Tech. Phys. Lett. 29, 12 (2003)].

    Google Scholar 

  13. R. Farshchi, E. V. Chopdekar, Y. Suzuki, P. D. Ashby, I. D. Sharp, J. W. Beeman, E. E. Haller, and O. D. Dubon, Phys. Stat. Solidi C 4, 1755 (2007).

    Article  Google Scholar 

  14. M. Capizzi and A. Mittaga, Appl. Phys. Lett. 50(14), 918 (1987).

    Article  ADS  Google Scholar 

  15. V. A. Kagadei, E. V. Nefyodtsev, and D. I. Proskurovsky, J. Vac. Sci. Technol. A 19, 1871 (2001).

    Article  ADS  Google Scholar 

  16. V. A. Kagadei, and E. V. Nefyodtsev, Fiz. Tekh. Poluprovodn. 43, 128 (2009) [Semiconductors 43, 121 (2009)].

    Google Scholar 

  17. S. J. Pearton, W. C. Dautremont-Smith, J. Chevallier, C. W. Tu, and K. D. Cummings, J. Appl. Phys. 58, 2821 (1986).

    Article  ADS  Google Scholar 

  18. J. C. Mikkelsen, Jr., Appl. Phys. Lett. 46, 882 (1985).

    Article  ADS  Google Scholar 

  19. J. I. Pankove, P. J. Zanzucchi, and C. W. Magee, Appl. Phys. Lett. 46, 421 (1985).

    Article  ADS  Google Scholar 

  20. J. I. Pankove, C. W. Magee, and R. O. Wance, Appl. Phys. Lett. 47, 748 (1985).

    Article  ADS  Google Scholar 

  21. É. M. Omel’yanovskii, A. V. Pakhomov, A. Ya. Polyakov, A. V. Govorkov, O. M. Borodina, and A. S. Bruk, Fiz. Tekh. Poluprovodn. 22, 1203 (1988) [Sov. Phys. Semicond. 22, 763 (1988)].

    Google Scholar 

  22. É. M. Omel’yanovskii and A. Ya. Polyakov, Vysokochist. Veshch. 5, 5 (1988).

    Google Scholar 

  23. J. Chevallier and M. Aucouturier, Ann. Rev. Mater. Sci. 18, 219 (1988).

    Article  ADS  Google Scholar 

  24. V. G. Bozhkov, V. A. Kagadei, and N. A. Torkhov, Izv. Vyssh. Uchebn. Zaved., Fiz. 8, 115 (1997).

    Google Scholar 

  25. Q. X. Zhao, B. O. Fimland, U. Sodervall, M. Willander, and E. Selvig, Appl. Phys. Lett. 71(15), 2139 (1997).

    Article  ADS  Google Scholar 

  26. J. Weber, S. J. Pearton, and W. C. Dautremont-Smith, Appl. Phys. Lett. 49, 1181 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Nefyodtsev.

Additional information

Original Russian Text © V.A. Kagadei, E.V. Nefyodtsev, 2010, published in Fizika i Tekhnika Poluprovodnikov, 2010, Vol. 44, No. 4, pp. 433–439.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagadei, V.A., Nefyodtsev, E.V. Numerical simulation of hydrogenation of GaAs at the cooling stage. Semiconductors 44, 413–420 (2010). https://doi.org/10.1134/S1063782610040019

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782610040019

Keywords

Navigation