Skip to main content
Log in

Comparison of the Effects of Environmental Treatments on Hydrogen Concentration and Energy Gap Variations of Hydrogenated Amorphous and Polymorphous Silicon Films Prepared by PECVD Technique

  • AMORPHOUS, VITREOUS, AND ORGANIC SEMICONDUCTORS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Hydrogen to silicon (Si–H) bond concentration and strength play important roles in high quality hydrogenated amorphous silicon layers prepared by PECVD techniques. In this paper, a number of amorphous and polymorphous Si layers have been deposited at different plasma conditions where a wide range of hydrogen concentration in the films are obtained. Some of the samples were stored in free air and the others in nitrogen for eight days. The layers were analyzed using AFM, FTIR, Raman, UV–Visible, and TEM immediately after deposition and after treatments. The results indicate that in the amorphous films with appreciable amount of embedded silicon nanocrystals, the variation of hydrogen content behaves differently than that of the amorphous films. It has been observed that treatment in the air increases the energy gap of the nanocrystals surrounded by oxide shells, formed around the surface nanocrystals, due to the quantum confinement effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. Ambrosio, M. Moreno, A. Torres, A. Carrillo, I. Vivaldo, I. Cosme, and A. Heredia, J. Alloys Compd. 643, S27 (2015).

    Article  Google Scholar 

  2. T. Matsui, H. Sai, A. Bidiville, H.-J. Hsu, and K. Matsubara, Sol. Energy 170, 486 (2018).

    Article  ADS  Google Scholar 

  3. J. Ganji, Renewable Energy (2019, in press).

  4. J. Ganji, A. Kosarian, and H. Kaabi, Silicon, 1 (2019).

  5. Z. Qiao, X. Xie, Q. Hao, D. Wen, J. Xue, and C. Liu, Appl. Surf. Sci. 324, 152 (2015).

    Article  ADS  Google Scholar 

  6. R. A. Street, Hydrogenated Amorphous Silicon, 1st ed. (Cambridge Univ. Press, Cambridge, 1991).

    Book  Google Scholar 

  7. M. Stuckelberger, R. Biron, N. Wyrsch, F.-J. Haug, and C. Ballif, Renewable Sustainable Energy Rev. 76, 1497 (2017).

    Article  Google Scholar 

  8. G. Seguini, C. Castro, S. Schamm-Chardon, G. Benassayag, P. Pellegrino, and M. Perego, Appl. Phys. Lett. 103, 23103 (2013).

    Article  Google Scholar 

  9. G. Conibeer, M. Green, R. Corkish, Y. Cho, E.-C. Cho, C.-W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, and T. Puzzer, Thin Solid Films 511, 654 (2006).

    Article  ADS  Google Scholar 

  10. G. Viera, M. Mikikian, E. Bertran, P. R. i Cabarrocas, and L. Boufendi, J. Appl. Phys. 92, 4684 (2002).

    Article  ADS  Google Scholar 

  11. H. Aguas, P. R. i Cabarrocas, S. Lebib, V. Silva, E. Fortunato, and R. Martins, Thin Solid Films 427, 6 (2003).

    Article  ADS  Google Scholar 

  12. R. N. Pereira and A. J. Almeida, J. Phys. D: Appl. Phys. 48, 314005 (2015).

    Article  ADS  Google Scholar 

  13. E. Arduca and M. Perego, Mater. Sci. Semicond. Process. 62, 156 (2017).

    Article  Google Scholar 

  14. E. G. Barbagiovanni, D. J. Lockwood, P. J. Simpson, and L. V. Goncharova, Appl. Phys. Rev. 1, 11302 (2014).

    Article  Google Scholar 

  15. X. D. Pi, R. Gresback, R. W. Liptak, S. A. Campbell, and U. Kortshagen, Appl. Phys. Lett. 92, 123102 (2008).

    Article  ADS  Google Scholar 

  16. A. H. Mahan, L. M. Gedvilas, and J. D. Webb, J. Appl. Phys. 87, 1650 (2000).

    Article  ADS  Google Scholar 

  17. L. Guo, J. Ding, J. Yang, G. Cheng, Z. Ling, and N. Yuan, Appl. Surf. Sci. 257, 9840 (2011).

    Article  ADS  Google Scholar 

  18. M. H. Brodsky, M. Cardona, and J. J. Cuomo, Phys. Rev. B 16, 3556 (1977).

    Article  ADS  Google Scholar 

  19. M. Sharma, S. Juneja, S. Sudhakar, D. Chaudhary, and S. Kumar, Mater. Sci. Semicond. Process. 43, 41 (2016).

    Article  Google Scholar 

  20. F. Demichelis, E. Minetti-Mezzetti, A. Tagliaferro, E. Tresso, P. Rava, and N. M. Ravindra, J. Appl. Phys. 59, 611 (1986).

    Article  ADS  Google Scholar 

  21. C. Shin, S. M. Iftiquar, J. Park, S. Ahn, S. Kim, J. Jung, S. Bong, and J. Yi, Mater. Chem. Phys. 159, 64 (2015).

    Article  Google Scholar 

  22. M. Gunes and C. R. Wronski, J. Appl. Phys. 81, 3526 (1997).

    Article  ADS  Google Scholar 

  23. M. G. de Greef and F. A. Rubinelli, Phys. Status Solidi 252, 170 (2015).

    Article  Google Scholar 

  24. K. L. Chopra, Thin Film Phenomena (McGraw-Hill, New York, 1969).

    Google Scholar 

  25. D. Das, Solid State Phenom. Trans Tech Publ., 227 (1995).

  26. J. C. Knights, Jpn. J. Appl. Phys. 18, 101 (1979).

    Article  Google Scholar 

  27. H. Shirai, J. Hanna, and I. Shimizu, Jpn. J. Appl. Phys. 30, L679 (1991).

    Article  Google Scholar 

  28. J. Palmans, W. M. M. Kessels, and M. Creatore, J. Phys. D: Appl. Phys. 47, 224003 (2014).

    Article  ADS  Google Scholar 

  29. P. Biswas, D. Paudel, R. Atta-Fynn, D. A. Drabold, and S. R. Elliott, Phys. Rev. Appl. 7, 24013 (2017).

    Article  ADS  Google Scholar 

  30. A. A. Langford, M. L. Fleet, B. P. Nelson, W. A. Lanford, and N. Maley, Phys. Rev. B 45, 13367 (1992).

    Article  ADS  Google Scholar 

  31. S. Veprek and M. G. J. Veprek-Heijman, Appl. Phys. Lett. 56, 1766 (1990).

    Article  ADS  Google Scholar 

  32. N. Itabashi, N. Nishiwaki, M. Magane, S. Naito, T. Goto, A. Matsuda, C. Yamada, and E. Hirota, Jpn. J. Appl. Phys. 29, L505 (1990).

    Article  ADS  Google Scholar 

  33. T. Hama, H. Okamoto, Y. Hamakawa, and T. Matsubara, J. Non. Cryst. Solids 59, 333 (1983).

    Article  ADS  Google Scholar 

  34. C. Koch, M. Ito, and M. Schubert, Sol. Energy Mater. Sol. Cells 68, 227 (2001).

    Article  Google Scholar 

  35. J. Perrin and T. Broekhuizen, Appl. Phys. Lett. 50, 433 (1987).

    Article  ADS  Google Scholar 

  36. M. J. Kushner, J. Appl. Phys. 63, 2532 (1988).

    Article  ADS  Google Scholar 

  37. K. Saitoh, M. Kondo, M. Fukawa, T. Nishimiya, A. Matsuda, W. Futako, and I. Shimizu, Appl. Phys. Lett. 71, 3403 (1997).

    Article  ADS  Google Scholar 

  38. F. Z. Sahraoui, A. Kebab, A. Bouhekka, J. D. Sib, Y. Bouizem, D. Benlakehal, and L. Chahed, Optik (Stuttg). 168, 65 (2018).

    Article  Google Scholar 

  39. A. Descoeudres, C. Allebe, N. Badel, L. Barraud, J. Champliaud, G. Christmann, F. Debrot, A. Faes, J. Geissbuhler, and J. Horzel, Sol. Energy (2018, in press).

  40. M. Fehr, A. Schnegg, B. Rech, O. Astakhov, F. Finger, R. Bittl, C. Teutloff, and K. Lips, Phys. Rev. Lett. 112, 66403 (2014).

    Article  ADS  Google Scholar 

  41. S. Sheng, H. Hao, H. Diao, X. Zeng, Y. Xu, X. Liao, and T. L. Monchesky, Appl. Surf. Sci. 253, 1677 (2006).

    Article  ADS  Google Scholar 

  42. T. Kaneko, K. Onisawa, M. Wakagi, Y. Kita, and T. Minemura, Jpn. J. Appl. Phys. 32, 4907 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Keramatzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keramatzadeh, A., Kosarian, A. & Kaabi, H. Comparison of the Effects of Environmental Treatments on Hydrogen Concentration and Energy Gap Variations of Hydrogenated Amorphous and Polymorphous Silicon Films Prepared by PECVD Technique. Semiconductors 54, 91–101 (2020). https://doi.org/10.1134/S1063782620010121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620010121

Keywords:

Navigation