Skip to main content
Log in

Defect engineering in implantation technology of silicon light-emitting structures with dislocation-related luminescence

  • Review
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Results obtained in development of physical foundations of ion implantation technology for fabrication of silicon light-emitting structures (LESs) based on dislocation-related luminescence and intended for operation at wavelengths close to ∼1.6 μm are summarized. The development of the concept of defect engineering in the technology of semiconductor devices makes it possible to determine the fundamental aspects of the process of defect formation; reveal specific features of the emission spectra related to changes in the implantation conditions of Er, Dy, Ho, O, and Si ions and the subsequent annealing; and design light-emitting structures with a desirable spectrum of luminescent centers and extended structural defects. The technological conditions in which only a single type of extended structural defect (Frank loops, perfect prismatic loops, or pure edge dislocations) is introduced into the light-emitting layer are found, which enables analysis of the correlation between the concentration of extended defects of a certain type and the intensity of lines of the dislocation-related luminescence. The key role of intrinsic point lattice defects in the origination and transformation of extended structural defects and luminescent centers responsible for the dislocation-related luminescence is revealed. It is found that the efficiency of luminescence excitation from the so-called D1 centers, which are of particular interest for practical applications, varies by more than two orders of magnitude between structures fabricated using different technological procedures. High-efficiency silicon light-emitting diodes with room-temperature dislocation-related luminescence have been fabricated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Pavesi, J. Phys.: Condens. Matter 15, R1169 (2003).

    Article  ADS  Google Scholar 

  2. H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, Appl. Phys. Lett. 46, 381 (1985).

    Article  ADS  Google Scholar 

  3. J. Michel, J. L. Benton, R. F. Ferrante, D. C. Jacobson, D. J. Eaglesham, E. A. Fitzgerald, Y. H. Xie, J. M. Poate, and L. C. Kimerling, J. Appl. Phys. 70, 2672 (1991).

    Article  ADS  Google Scholar 

  4. B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, Appl. Phys. Lett. 64, 2842 (1994).

    Article  ADS  Google Scholar 

  5. G. Franzo, F. Priolo, S. Coffa, A. Polman, and A. Carnera, Appl. Phys. Lett. 64, 2235 (1994).

    Article  ADS  Google Scholar 

  6. J. Stimmer, A. Reittinger, J. F. Nützel, G. Abstreiter, H. Holzbrecher, and Ch. Buchal, Appl. Phys. Lett. 68, 3290 (1996).

    Article  ADS  Google Scholar 

  7. N. A. Sobolev, O. B. Gusev, E. I. Shek, V. I. Vdovin, T. G. Yugova, and A. M. Emel’yanov, Appl. Phys. Lett. 72, 3326 (1998).

    Article  ADS  Google Scholar 

  8. N. A. Sobolev, Fiz. Tekh. Poluprovodn. 29, 1153 (1995) [Semiconductors 29, 595 (1995)].

    Google Scholar 

  9. A. Polman, J. Appl. Phys. 82, 1 (1997).

    Article  ADS  Google Scholar 

  10. J. Michel, L. V. Assali, M. T. Morse, and L. C. Kimerling, Semicond. Semimet., vol. 49, Ed. by D. J. Lockwood (1998) p. 111.

  11. S. Coffa, G. Franzo, and F. Priolo, MRS Bull. 23, 25 (1998).

    Google Scholar 

  12. A. J. Kenyon, Semicond. Sci. Technol. 20, R65 (2005).

    Article  ADS  Google Scholar 

  13. M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, Nature 412, 805 (2001).

    Article  ADS  Google Scholar 

  14. N. A. Sobolev, in Advances in Light Emitting Materials, Ed. by H. G. Grimmeiss, B. Monemar, and M. Kittler (Trans. Tech., Switzerland, 2008), ch. 5; Mater. Sci. Forum 590, 79 (2008).

    Google Scholar 

  15. N. A. Drozdov, A. A. Patrin, and V. D. Tkachev, Pis’ma Zh. Éksp. Teor. Fiz. 23, 651 (1976) [JETP Lett. 23, 597 (1976)].

    Google Scholar 

  16. V. V. Kveder, E. A. Steinman, S. A. Shevchenko, and H. G. Grimmeiss, Phys. Rev. B 51, 10 520 (1995).

    Google Scholar 

  17. E. O. Sveinbjornsson and J. Weber, Appl. Phys. Lett. 69, 2686 (1996).

    Article  ADS  Google Scholar 

  18. V. Kveder, V. Badylevich, E. Steinman, A. Izotov, M. Zeibt, and W. Schreter, Appl. Phys. Lett. 84, 2106 (2004).

    Article  ADS  Google Scholar 

  19. R. Sauer, J. Weber, J. Stolz, E. R. Weber, K. H. Kurster, and H. Alexander, Appl. Phys. A 36, 1 (1985).

    Article  ADS  Google Scholar 

  20. S. Pizzini, M. Guzzi, E. Grilli, and G. Borionetti, J. Phys.: Condens. Matter 12, 10131 (2000).

    Article  ADS  Google Scholar 

  21. M. Acciarri, S. Binetti, O. V. Feklisova, E. A. Steinman, and E. B. Yakimov, Solid State Phenom. 95–96, 453 (2004).

    Article  Google Scholar 

  22. N. A. Sobolev, A. M. Emel’yanov, E. I. Shek, O. V. Feklisova, E. B. Yakimov, and T. V. Kotereva, Phys. Stat. Solidi C 2, 1842 (2005).

    Article  Google Scholar 

  23. V. V. Kveder, E. A. Steiman, and H. G. Grimmeiss, J. Appl. Phys. 78, 446 (1995).

    Article  ADS  Google Scholar 

  24. S. Fukatsu, Y. Mera, M. Inoue, K. Maeda, H. Akiyama, and H. Sakaki, Appl. Phys. Lett. 68, 1889 (1996).

    Article  ADS  Google Scholar 

  25. S. Binetti, M. Donghi, S. Pizzini, A. Castaldini, A. Cavallini, F. Fraboni, and N. A. Sobolev, Solid State Phenom. 57–58, 197 (1997).

    Article  Google Scholar 

  26. S. Pizzini, E. Leonti, S. Binetti, M. Acciarri, A. Le Donne, and B. Pichaud, Solid State Phenom. 95–96, 273 (2004).

    Article  Google Scholar 

  27. A. A. Kaplyanskii, Opt. Spektrosk. 16, 329 (1964).

    ADS  Google Scholar 

  28. N. A. Drozdov, A. A. Patrin, and V. D. Tkachev, Phys. Stat. Solidi B 83, K137 (1977).

    Article  Google Scholar 

  29. M. Suesawa, Y. Sasaki, Y. Nishino, and K. Sumino, Jpn. J. Appl. Phys. 20, 537 (1981).

    Article  ADS  Google Scholar 

  30. M. Suesawa, K. Sumino, and Y. Nishina, Jpn. J. Appl. Phys. 21, L518 (1982).

    Article  ADS  Google Scholar 

  31. A. E. Huges and W. A. Runciman, Proc. Phys. Soc. 90, 827 (1967).

    Article  Google Scholar 

  32. R. Sauer, Ch. Kisielowski-Kemmerich, and H. Alexander, Phys. Rev. Lett. 57, 1472 (1986).

    Article  ADS  Google Scholar 

  33. M. Suezawa and K. Sumino, Phys. Status Solidi A 78, 639 (1983).

    Article  Google Scholar 

  34. G. P. Watson, J. L. Benton, Y.-H. Hie, and E. A. Fitzgerald, J. Appl. Phys. 83, 3773 (1998).

    Article  ADS  Google Scholar 

  35. V. Higgs, E. C. Lightowlers, and S. Tajbakhsh, Appl. Phys. Lett. 61, 1087 (1992).

    Article  ADS  Google Scholar 

  36. T. Sekiguchi and K. Sumino, Mater. Sci. Forum 196–201, 1201 (1995).

    Article  Google Scholar 

  37. M. Suezawa, Y. Sasaki, and K. Sumino, Phys. Stat. Solidi A 79, 173 (1983).

    Article  Google Scholar 

  38. E. A. Steiman, V. V. Kveder, and H. G. Grimmeiss, Solid State Phenom. 47–48, 217 (1996).

    Article  Google Scholar 

  39. V. Kveder, M. Badylevich, W. Schröter, M. Seibt, E. Steinman, and A. Izotov, Phys. Stat. Solidi A 202, 901 (2005).

    Article  ADS  Google Scholar 

  40. L. C. Kimerling and J. R. Patel, Appl. Phys. Lett. 34, 73 (1979).

    Article  ADS  Google Scholar 

  41. V. V. Kveder, Yu. A. Ossipyan, W. Schroeter, and G. Zoth, Phys. Stat. Solidi A 72, 701 (1982).

    Article  Google Scholar 

  42. P. Omling, L. Samuelson, and H. G. Grimmeis, J. Appl. Phys. 54, 5117 (1983).

    Article  ADS  Google Scholar 

  43. D. Cavalcoli, A. Cavallini, and E. Gombia, Phys. Rev. B 56, 10208 (1997).

    Article  ADS  Google Scholar 

  44. Electronic Properties of Dislocations in Semiconductors, Ed. by Yu. A. Osip’yan (Éditorial URSS, Moscow, 2000) [in Russian].

    Google Scholar 

  45. V. Kveder and M. Kittler, in Advances in Light Emitting Materials, Ed. by H. G. Grimmeiss, B. Monemar, and M. Kittler (Trans. Tech., Switzerland, 2008), ch. 3; Mater. Sci. Forum 590, 29 (2008).

    Google Scholar 

  46. G. Davies, Phys. Rep. 176, 83 (1989).

    Article  ADS  Google Scholar 

  47. S. Coffa, S. Libertino, and C. Spinella, Appl. Phys. Lett. 76, 321 (2000).

    Article  ADS  Google Scholar 

  48. V. Raineri, S. Coffa, E. Szilágyi, J. Gyulai, and E. Rimini, Phys. Rev. B 61, 937 (2000).

    Article  ADS  Google Scholar 

  49. N. A. Sobolev, M. S. Bresler, O. B. Gusev, M. I. Makoviichuk, E. O. Parshin, and E. I. Shek, Fiz. Tekh. Poluprovodn. 28, 1995 (1994) [Semiconductors 28, 1100 (1994)].

    Google Scholar 

  50. N. A. Sobolev, O. V. Alexandrov, M. S. Bresler, O. B. Gusev, E. I. Shek, M. I. Makoviichuk, and E. O. Parshin, Mater. Sci. Forum 196–201, 597 (1995).

    Article  Google Scholar 

  51. T. Gregorkiewicz, I. Tsimperidis, C. A. J. Ammerlaan, F. P. Widdershoven, and N. A. Sobolev, MRS Symp. Proc. 422, 207 (1996).

    Google Scholar 

  52. R. N. Kyutt and N. A. Sobolev, Fiz. Tverd. Tela 39, 853 (1997) [Phys. Solid State 39, 759 (1997)].

    Google Scholar 

  53. N. A. Sobolev, O. B. Gusev, E. I. Shek, V. I. Vdovin, T. G. Yugova, and A. M. Emel’yanov, Appl. Phys. Lett. 72, 3326 (1998).

    Article  ADS  Google Scholar 

  54. M. G. Mil’vidskii and V. B. Osvenskii, Structure Defects in the Single Crystals of Semiconductors (Metallurgiya, Moscow, 1984) [in Russian].

    Google Scholar 

  55. K. Ravi, Imperfections and Impurities in Semiconductor Silicon (Wiley, New York, 1981; Mir, Moscow, 1984).

    Google Scholar 

  56. W. Frank, U. Gösele, H. Mehrer, and A. Seeger, in Diffusion in Crystalline Solids, Ed. by G. E. Murch and A. S. Nowick (Academic Press, New York, 1984), p. 63.

    Google Scholar 

  57. P. M. Fahey, P. B. Griffin, and J. D. Plummer, Rev. Mod. Phys. 61, 289 (1989).

    Article  ADS  Google Scholar 

  58. N. A. Sobolev, in Semiconductor Technology: Processing and Novel Fabrication Techniques, Ed. by M. Levinshtein and M. Shur (Wiley Intersci., New York, 1997), p. 131.

    Google Scholar 

  59. V. Higgs, F. Chin, X. Wang, J. Mosalski, and R. Beanland, J. Phys.: Condens. Matter 12, 10105 (2000).

    Article  ADS  Google Scholar 

  60. N. A. Sobolev, Physica B 401–402, 10 (2007).

    Article  MathSciNet  Google Scholar 

  61. N. A. Sobolev, O. B. Gusev, E. I. Shek, V. I. Vdovin, T. G. Yugova, and A. M. Emel’yanov, J. Luminesc. 80, 357 (1999).

    Article  Google Scholar 

  62. P. B. Klein and G. S. Pomrenke, Electron. Lett. 24, 1503 (1988).

    Article  ADS  Google Scholar 

  63. O. V. Aleksandrov, Yu. A. Nikolaev, N. A. Sobolev, V. I. Sakharov, I. T. Serenkov, and Yu. A. Kudryavtsev, Fiz. Tekh. Poluprovodn. 33, 652 (1999) [Semiconductors 33, 606 (1999)].

    Google Scholar 

  64. R. N. Kyutt, P. V. Petrashen, and L. M. Sorokin, Phys. Stat. Solidi A 60, 381 (1980).

    Article  Google Scholar 

  65. P. Zaumseil, U. Winter, F. Cembali, M. Servidori, and Z. Sourek, Phys. Stat. Solidi A 100, 95 (1982).

    Article  Google Scholar 

  66. V. A. Bushuev and A. P. Petrakov, Kristallografiya 40, 1050 (1995) [Crystallogr. Rep. 40, 974 (1995)].

    Google Scholar 

  67. O. V. Aleksandrov, R. N. Kyutt, and T. G. Alksnis, Fiz. Tverd. Tela 22, 2892 (1980) [Sov. Phys. Solid State 22, 1688 (1980)].

    Google Scholar 

  68. C. J. Tsai, A. Dommann, M. A. Nicolet, and T. Vreeland, J. Appl. Phys. 69, 2067 (1991).

    ADS  Google Scholar 

  69. G. Bai and M.-A. Nicolet, J, Appl. Phys. 70, 649 (1991).

    Article  ADS  Google Scholar 

  70. S. Mader and A. F. Michel, Phys. Stat. Solidi A 33, 793 (1976).

    Article  Google Scholar 

  71. T. Sekiguchi, K. Sumino, Z. J. Radzimski, and G. A. Rozgonyi, Mater. Sci. Eng. B 42, 141 (1996).

    Article  Google Scholar 

  72. V. Higgs, E. C. Lightowlers, C. E. Norman, and P. Keighley, Mater. Sci. Forum 83–87, 1309 (1992).

    Article  Google Scholar 

  73. V. I. Vdovin, T. G. Yugova, N. A. Sobolev, E. I. Shek, M. I. Makovijchuk, and E. O. Parshin, Nucl. Instrum. Methods Phys. Res. B 147, 116 (1999).

    Article  ADS  Google Scholar 

  74. N. A. Sobolev, E. I. Shek, A. M. Emel’yanov, V. I. Vdovin, and T. G. Yugova, Fiz. Tekh. Poluprovodn. 33, 656 (1999) [Semiconductors 33, 610 (1999)].

    Google Scholar 

  75. V. I. Vdovin, N. A. Sobolev, E. M. Emel’yanov, O. B. Gusev, E. I. Shek, and T. G. Yugova, Mater. Sci. Forum 258–263, 1521 (1997).

    Article  Google Scholar 

  76. N. A. Sobolev, A. M. Emel’yanov, E. I. Shek, V. I. Sakharov, I. T. Serenkov, Yu. A. Nikolaev, V. I. Vdovin, T. G. Yugova, M. I. Makovijchuk, E. O. Parshin, and S. Pizzini, Mater. Sci. Eng. B 91–92, 167 (2002).

    Article  Google Scholar 

  77. N. A. Sobolev, A. M. Emel’yanov, E. I. Shek, V. I. Vdovin, T. G. Yugova, and S. Pizzini, J. Phys.: Condens. Matter 14, 13241 (2002).

    Article  ADS  Google Scholar 

  78. N. A. Sobolev, V. I. Vdovin, T. G. Yugova, E. I. Shek, A. M. Emel’yanov, and A. K. Gutakovskii, in Proc. of the 5th Russ. Conf. on Semiconductor Physics (Nizhn. Novgorod, Russia, 2001), p. 363.

    Google Scholar 

  79. A. Polman, J. S. Guster, E. Snoeks, and G. N. van den Hoven, Appl. Phys. Lett. 62, 507 (1993).

    Article  ADS  Google Scholar 

  80. N. A. Sobolev, A. M. Emel’yanov, E. I. Shek, O. V. Feklisova, and E. B. Yakimov, Fiz. Tekh. Poluprovodn. 39, 1271 (2005) [Semiconductors 39, 1229 (2005)].

    Google Scholar 

  81. N. A. Sobolev, A. M. Emel’yanov, E. I. Shek, M. I. Makoviichuk, and E. O. Parshin, in Proc. of the 13th Intern. Symp. on Radiation Physics of Solid State (Sevastopol’, Ukraina, 2003), p. 131.

    Google Scholar 

  82. N. A. Sobolev, A. M. Emel’yanov, V. V. Zabrodskii, N. V. Zabrodskaya, V. L. Sukhanov, and E. I. Shek, Fiz. Tekh. Poluprovodn. 41, 635 (2007) [Semiconductors 41, 616 (2007)].

    Google Scholar 

  83. N. A. Sobolev, Physica B 308–310, 333 (2001).

    Article  Google Scholar 

  84. N. A. Sobolev, A. M. Emel’yanov, R. N. Kyutt, and Yu. A. Nikolaev, Solid State Phenom. 69–70, 371 (1999).

    Article  Google Scholar 

  85. A. M. Emel’yanov and E. I. Shek, Fiz. Tverd. Tela 46, 175 (2004) [Phys. Solid State 46, 1810 (2004)].

    Google Scholar 

  86. W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, Nature 410, 192 (2001).

    Article  ADS  Google Scholar 

  87. D. J. Stowe, S. A. Galloway, S. Senkader, K. Mallik, R. J. Falster, and P. R. Wilshaw, Physica B 340–342, 710 (2003).

    Article  Google Scholar 

  88. T. Hoang, P. LeMinh, J. Holleman, and J. Schmitz, IEEE Electron. Rev. Lett. 27, 105 (2006).

    Article  ADS  Google Scholar 

  89. N. A. Sobolev, B. Ya. Ber, A. M. Emel’yanov, A. P. Kovarskii, and E. I. Shek, Fiz. Tekh. Poluprovodn. 41, 295 (2007) [Semiconductors 41, 285 (2007)].

    Google Scholar 

  90. N. A. Sobolev, A. M. Emel’yanov, V. I. Sakharov, I. T. Serenkov, E. I. Shek, and D. I. Tetel’baum, Fiz. Tekh. Poluprovodn. 41, 555 (2007) [Semiconductors 41, 537 (2007)].

    Google Scholar 

  91. N. A. Sobolev, R. N. Kyutt, V. I. Sakharov, I. T. Serenkov, E. I. Shek, and V. I. Vdovin, in Proc. of the 11th Symp. on Nanophysics and Nanoelectronics (Nizhn. Novgorod, Russia, 2007), p. 428.

    Google Scholar 

  92. N. A. Sobolev, V. I. Sakharov, I. T. Serenkov, and V. I. Vdovin, Superlatt. Microstruct. 45, 177 (2009).

    Article  ADS  Google Scholar 

  93. N. A. Sobolev, A. E. Kalyadin, and E. I. Shek, in Proc. of the 18th Intern. Symp. on Radiation Physics of Solid State (Sevastopol’, Ukraina, 2003), p. 11.

    Google Scholar 

  94. A. T. Blumenau, R. Jones, S. Öberg, P. R. Briddon, and T. Frauenheim, Phys. Rev. Lett. 87, 187404 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Sobolev.

Additional information

Original Russian Text © N.A. Sobolev, 2010, published in Fizika i Tekhnika Poluprovodnikov, 2010, Vol. 44, No. 1, pp. 3–25.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobolev, N.A. Defect engineering in implantation technology of silicon light-emitting structures with dislocation-related luminescence. Semiconductors 44, 1–23 (2010). https://doi.org/10.1134/S106378261001001X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378261001001X

Keywords

Navigation