Skip to main content
Log in

Dislocation-related photoluminescence in silicon

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Photoluminescence is studied in silicon, deformed in a well-defined and reproducible way. Usual deformation conditions (high temperature, low stress) result in sharp spectra of the D1 through D4 lines as recently described in the literature. New lines D5 and D6 emerge for predeformation as above and subsequent low-temperature, high-stress deformation. Another new sharp line, D12, is observed when both the familiar and the novel lines appear simultaneously. Annealing for 1 h atT A≳ 300 °C causes all new lines to disappear and the D1–D4 spectra to reappear. Quantitative annealing and TEM micrographs suggest that D5 is related to straight dislocations and D6 to stacking faults, whereas D1–D4 are due to relaxed dislocations. Photoluminescence under uniaxial stress shows that D1/D2 originate in tetragonal defects with random orientation relative to 〈100〉 directions, whereas D6 stems from triclinic centers, preferentially oriented — as are the D3/D4 centers. We conclude that the D3/D4 and the D5 and D6 defects are closely related, whereas the independent D1/D2 centers might be deformation-produced point defects in the strain region of dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.A. Drozdov, A.A. Patrin, V.D. Tkachev: Pis'ma Zh. Eksp. Teor. Fiz.23, 651 (1976); Sov. Phys.JETP Lett.23, 597 (1976)

    Google Scholar 

  2. N.A. Drozdov, A.A. Patrin, V.D. Tkachev: Phys. stat. sol. (b)83, K137 (1977)

    Google Scholar 

  3. R.H. Uebbing, P. Wagner, H. Baumgart, H.J. Queisser:Appl. Phys. Lett.37, 1078 (1980)

    Google Scholar 

  4. D. Gwinner, R. Labusch: Phys. stat. sol. (a)65, K99 (1981)

    Google Scholar 

  5. M. Suezawa, Y. Sasaki, Y. Nishina, K. Sumino: Jpn. J. Appl. Phys.20, L537 (1981)

    Google Scholar 

  6. M. Suezawa, K. Sumino, Y. Nishina: Jpn. J. Appl. Phys.21, L518 (1982)

    Google Scholar 

  7. M. Suezawa, K. Sumino: Phys. stat. sol. (a)78, 639 (1983)

    Google Scholar 

  8. M. Suezawa, K. Sumino: J. Phys. (Paris)44, C4–133 (1983) (Proc. Intern. Symp. Structure and Properties of Dislocations in Semiconductors, Aussois, France 1983)

    Google Scholar 

  9. M. Suezawa, Y. Sasaki, K. Sumino: Phys. stat. sol. (a)79, 173 (1983)

    Google Scholar 

  10. N.A. Drozdov, A.A. Patrin, V.D. Tkachev: Phys. stat. sol. (a)64, K63 (1981)

    Google Scholar 

  11. Y.A. Osip'yan, A.M. Rtishchev, E.A. Shteinman, E.B. Yakimov, N.A. Yarykin: Zh. Eksp. Teor. Fiz.82, 509 (1982); Sov. Phys. JETP55, 294 (1982)

    Google Scholar 

  12. D. Gwinner, V.V. Kveder: Private communication

  13. D. Gwinner: J. Phys. (Paris)44, C4–141 (1983)

    Google Scholar 

  14. H. Alexander, C. Kisielowski-Kemmerich, E.R. Weber: Physica116B, 583 (1983)(Proc. 12th Intern. Conf. Defects in Semiconductors, Amsterdam, The Netherlands, 1982)

    Google Scholar 

  15. R. Sauer, J. Weber:Lecture Notes in Physics 175, 120 (Springer, Berlin, Heidelberg, New York 1983) (Proc. Intern. School Defect Complexes in Semiconductor Structures, Matrafüred, Hungary 1982)

    Google Scholar 

  16. E.R. Weber, H. Alexander: J. Phys. (Paris)44, C4–319 (1983)

    Google Scholar 

  17. K. Wessel, H. Alexander: Philos. Mag.35, 1523 (1977)

    Google Scholar 

  18. See, for literature, J.C. Hensel, T.G. Phillips, G.A. Thomas:Solid State Physics 32, 87 (Academic Press, New York 1977)

    Google Scholar 

  19. T.M. Rice:Solid State Physics 32, 1 (Academic Press, New York 1977)

    Google Scholar 

  20. E. Weber, H. Alexander: Inst. Phys. Conf. Ser.31, 266 (1977)

    Google Scholar 

  21. Spectrum and sample history by courtesy of H. Conzelmann (private communication)

  22. Sample and sample data from L.C. Kimerling (AT&T Bell Laboratories, USA)

  23. Samples from D. Bäuerle (University of Linz, Austria); description of crystal growth in D. Bäuerle, P. Irsigler, G. Leyendecker, H. Noll, D. Wagner: Appl. Phys. Lett.40, 819 (1982)

    Google Scholar 

  24. K. Köhler, W. Appel, E. Bauser (Max-Planck-Institut für Festkörperforschung, Stuttgart) (private communication)

  25. Same treatment as in [11 and 12]

  26. Same treatment as in [25]

    Google Scholar 

  27. B. Pohoryles: Phys. stat. sol. (a)67, K75 (1981)

    Google Scholar 

  28. H. Alexander: InDislocations: Structure de coeur et propriétés physiques, ed. by P. Veyssière, L. Kubin, and J. Castaing, Editions de CNRS (1984) (in press)

  29. H. Alexander, K. Wessel: J. Phys. (Paris)39, C2–114 (1978)

    Google Scholar 

  30. K.-H. Küsters: Unpublished work H. Gottschalk, 10th Intern. Congress Electr. Microsc. (Hamburg, 1982) p. 527

  31. H. Teichler: J. Phys. (Paris)40, C6–43 (1979)

    Google Scholar 

  32. R. Sauer, J. Weber: Physica116B, 195 (1983)

    Google Scholar 

  33. See, for details, the discussion in K. Thonke, J. Weber, J. Wagner, R. Sauer: Physica116B, 252 (1983)

    Google Scholar 

  34. A.M. Stoneham:Theory of Defects in Solids (Clarendon Press, Oxford 1975)

    Google Scholar 

  35. A.E. Hughes, W.A. Runciman: Proc. Phys. Soc.90, 827 (1967)

    Google Scholar 

  36. A.A. Kaplyanskii: Opt. Spectrosc.16, 329 (1964)

    Google Scholar 

  37. A.A. Kaplyanskii: Opt. Spectrosc.16, 557 (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauer, R., Weber, J., Stolz, J. et al. Dislocation-related photoluminescence in silicon. Appl. Phys. A 36, 1–13 (1985). https://doi.org/10.1007/BF00616453

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00616453

PACS

Navigation