Skip to main content
Log in

Formation of dislocation defects in the process of burying of InAs quantum dots into GaAs

  • Fabrication, Treatment, and Testing of Materials and Structures
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Evidence given by electron microscopy of dislocation relaxation of stresses near InAs quantum dots buried into GaAs is presented. It was found that dislocation defects not emerging to the film surface are formed in some buried quantum dots. This suggests that stress relaxation occurs in the buried state of the quantum dot, rather than at the stage of the formation and growth of an InAs island on the GaAs surface. Models of internal dislocation relaxation of buried quantum dots are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1998).

    Google Scholar 

  2. Self-Assembled Quantum Dots Series: Lecture Notes in Nanoscale Science and Technology, Ed. by Z. M. Wang (Springer, Berlin, 2008).

    Google Scholar 

  3. J. D. Davies, J. Appl. Phys. 84, 1358 (1998).

    Article  ADS  Google Scholar 

  4. A. D. Andreev and E. P. O’Reilly, Phys. Rev. B 62, 15851 (2000).

    Article  ADS  Google Scholar 

  5. A. E. Romanov, P. Waltereit, and J. S. Speck, J. Appl. Phys. 97, 43708 (2005).

    Article  Google Scholar 

  6. V. P. Evtikhiev, O. V. Konstantinov, A. V. Matveentsev, and A. E. Romanov, Fiz. Tekh. Poluprovodn. 36, 79 (2002) [Semiconductors 36, 74 (2002)].

    Google Scholar 

  7. B. V. Novikov, G. G. Zegrya, R. M. Peleshchak, O.O. Dan’kiv, V. A. Gaĭsin, V. G. Talalaev, I. V. Shtrom, and G. E. Tsyrlin, Fiz. Tekh. Poluprovodn. 42, 1094 (2008) [Semiconductors 42, 1076 (2008)].

    Google Scholar 

  8. V. A. Shchukin and D. Bimberg, Rev. Mod. Phys. 71, 1125 (1999).

    Article  ADS  Google Scholar 

  9. J. C. Hamilton, F. Leonard, E. Johnson, and U. Dahmen, Phys. Rev. Lett. 98, 236102 (2007).

    Article  ADS  Google Scholar 

  10. F. K. LeGoues, M. C. Reuter, J. Tersoff, M. Hammarm, and R. M. Tromp, Phys. Rev. Lett. 73, 300 (1994).

    Article  ADS  Google Scholar 

  11. K. Tillmann and A. Foster, Thin Sol. Films 368, 93 (2000).

    Article  ADS  Google Scholar 

  12. B. J. Spencer and J. Tersoff, Appl. Phys. Lett. 77, 2533 (2000).

    Article  ADS  Google Scholar 

  13. V. V. Chaldyshev, N. A. Bert, A. E. Romanov, A. A. Suvorova, A. L. Kolesnikova, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin, P. Werner, N. D. Zakharov, and A. Claverie, Appl. Phys. Lett. 80, 377 (2002).

    Article  ADS  Google Scholar 

  14. V. V. Chaldyshev, A. L. Kolesnikova, N. A. Bert, and A. E. Romanov, J. Appl. Phys. 97, 024309 (2005).

    Article  ADS  Google Scholar 

  15. N. A. Bert, A. L. Kolesnikova, A. E. Romanov, and V. V. Chaldyshev, Fiz. Tverd. Tela 44, 2139 (2002) [Phys. Solid State 44, 2240 (2002)].

    Google Scholar 

  16. A. L. Kolesnikova, A. E. Romanov, and V. V. Chaldyshev, Fiz. Tverd. Tela 49, 633 (2007) [Phys. Solid State 49, 667 (2007)].

    Google Scholar 

  17. N. A. Bert, V. V. Chaldyshev, A. L. Kolesnikova, and A. E. Romanov, in Self-Assembled Quantum Dots, Ed. by Z. M. Wang (Springer, 2008), p. 297.

  18. J. W. Matheus, Phys. Stat. Solidi A 15, 607 (1973).

    Article  Google Scholar 

  19. J. W. Matheus, E. Klokholm, V. Sadagopan, T. S. Plaskett, and E. Mendel, Acta Metall. 21, 203 (1973).

    Article  Google Scholar 

  20. N. D. Zakharov, V. N. Rozhanskii, and P. L. Kochazhkina, Sov. Phys. Solid State 16, 1444 (1974).

    Google Scholar 

  21. W. C. Johnson and J. K. Lee, Acta Metall. 31, 1033 (1983).

    Article  Google Scholar 

  22. X. J. Xin, G. S. Daehn, and R. H. Wagoner, Acta Mater. 46, 6131 (1998).

    Article  Google Scholar 

  23. V. V. Chaldyshev, N. A. Bert, A. L. Kolesnikova, and A. E. Romanov, Phys. Rev. B 79, 233304 (2009).

    Google Scholar 

  24. A. V. Vasev, M. A. Putyato, B. R. Semyagin, V. A. Seleznev, and V. V. Preobrazhenskiĭ, Vestn. NGU, Ser. Fiz. 3(4), 9 (2008).

    Google Scholar 

  25. V. V. Preobrazhenskiĭ, M. A. Putyato, and B. R. Semyagin, Fiz. Tekh. Poluprovodn. 36, 897 (2002) [Semiconductors 36, 837 (2002)].

    Google Scholar 

  26. K. Sears, J. Wong-Leung, H. H. Tan, and C. Jagadish, J. Appl. Phys. 99, 113503 (2006).

    Article  ADS  Google Scholar 

  27. S. Guha, A. Madhukar, and K. C. Rajkumar, Appl. Phys. Lett. 57, 2110 (1990).

    Article  ADS  Google Scholar 

  28. N. Y. Jin-Phillipp and F. Phillipp, J. Microscopy 194, 161 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Chaldyshev.

Additional information

Original Russian Text © N.A. Bert, A.L. Kolesnikova, V.N. Nevedomsky, V.V. Preobrazhenskii, M.A. Putyato, A.E. Romanov, V.M. Seleznev, B.R. Semyagin, V.V. Chaldyshev, 2009, published in Fizika i Tekhnika Poluprovodnikov, 2009, Vol. 43, No. 10, pp. 1426–1433.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bert, N.A., Kolesnikova, A.L., Nevedomsky, V.N. et al. Formation of dislocation defects in the process of burying of InAs quantum dots into GaAs. Semiconductors 43, 1387–1393 (2009). https://doi.org/10.1134/S1063782609100236

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782609100236

PACS numbers

Navigation