Skip to main content
Log in

High-power lasers (γ = 808 nm) based on the AlGaAs/GaAs heterostructures of separate confinement

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Laser diodes with a wavelength of 808 nm obtained by the MOC-hydride epitaxy in a system of the AlGaAs alloys have been studied. Parameters of the laser diodes with symmetric narrow and asymmetric wide waveguides are compared. It is shown that the maximum optical power in these laser diodes is limited by the catastrophic optical degradation of the SiO2/Si mirrors. In laser diodes with a symmetric narrow waveguide, the maximum power was 3 W, and with an asymmetric wide waveguide, it was 6 W. It is shown that it is possible to increase the maximum optical power by using the barrier Si3N4 layer introduced between the cleavage of the laser diode and SiO2/Si insulator coatings. The power of a laser diode with the barrier Si3N4 layer and with the asymmetric wide waveguide was 8.5 W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wang, B. Smith, X. Xie, X. Wang, and G. T. Burnham, Appl. Phys. Lett. 74(11), 1525 (1999).

    Article  ADS  Google Scholar 

  2. S. O’Brien, H. Zhao, B. Li, and R. Lang, in LEOS-97, Conf. Proc. ThX5, vol. 2, p. 486.

  3. Lin Li, Guojun Liu, Zhanguo Li, Mei Li, Hui Li, Xiaohua Wang, and Chunming Wan, IEEE Photon. Tech. Lett. 20(8), 566 (2008).

    Article  ADS  Google Scholar 

  4. A. Yu. Andreev, A. Yu. Leshko, A. V. Lyutetskii, A. A. Marma-lyuk, T. A. Nalet, A. A. Padalitsa, N. A. Pikhtin, D. R. Sabitov, V. A. Simakov, S. O. Slipchenko, M. A. Khomylev, and I. S. Tarasov, Fiz. Tekh. Poluprovodn. 40(5), 628 (2006) [Semiconductors 40, 611 (2006)].

    Google Scholar 

  5. A. Knauer, F. Bugge, G. Erbert, H. Wenzel, K. Vogel, U. Zeimer, and M. Weyers, J. Electron. Mater. 29(1), 53 (2000).

    Article  ADS  Google Scholar 

  6. W. Pitroff, F. Bugge, G. Erbert, A. Knauer, J. Maege, J. Sebastian, R. Staske, A. Thies, H. Wenzel, and G. Traenkle, in LEOS-98, Conf. Proc. WQ3, vol. 1, p. 278.

  7. A. Oster, F. Bugge, G. Erbert, and H. Wenzel, IEEE J. Select. Topics Quant. Electron. 5(3), 631 (1999).

    Article  Google Scholar 

  8. G. Erbert, F. Bugge, A. Oster, J. Sebastian, R. Staske, K. Vogel, H. Wenzel, M. Weyers, and G. Traenkle, in LEOS-97, Conf. Proc. WY3, vol. 2, p. 199.

  9. G. Erbert, F. Bugge, J. Sebastian, K. Vogel, H. Wenzel, and M. Weyers, in LEOS’96, Conf. Proc. ME4, vol. 1, p. 46.

  10. J. Sebastian, G. Beister, F. Bugge, F. Buhrandt, G. Erbert, H. G. Hansel, R. Hulsewede, A. Knauer, W. Pittroff, R. Staske, M. Schroder, H. Wenzel, M. Weyers, and G. Trankle, IEEE J. Select. Topics Quant. Electron. 7(2), 334 (2001).

    Article  Google Scholar 

  11. A. Knauer, G. Erbert, R. Staske, B. Sumpf, H. Wenzel, and M. Weyers, Semicond. Sci. Technol. 20, 621 (2005).

    Article  ADS  Google Scholar 

  12. J. Diaz, H. J. Yi, M. Razeghi, and G. T. Burnham, Appl. Phys. Lett. 71(21), 3042 (1997).

    Article  ADS  Google Scholar 

  13. J. K. Wade, L. J. Mawst, D. Botez, and J. A. Morris, Electron. Lett. 34(11), 1100 (1998).

    Article  Google Scholar 

  14. J. K. Wade, L. J. Mawst, D. Botez, R. F. Nabiev, M. Jansen, and J. A. Morris, Appl. Phys. Lett. 72(1), 4 (1998).

    Article  ADS  Google Scholar 

  15. J. K. Wade, L. J. Mawst, D. Botez, M. Jansen, F. Fang, and R. F. Nabiev, Appl. Phys. Lett. 70(2), 149 (1997).

    Article  ADS  Google Scholar 

  16. J. K. Wade, L. J. Mawst, D. Botez, R. F. Nabiev, and M. Jansen, Appl. Phys. Lett. 71(2), 172 (1997).

    Article  ADS  Google Scholar 

  17. F. Yamanaka, M. Wada, T. Kuniyasu, T. Ohgoh, T. Fukunaga, and T. Hayakawa, Electron. Lett. 37(21), 1289 (2001).

    Article  Google Scholar 

  18. V. V. Bezotosnyi, V. V. Vasil’eva, D. A. Vinokurov, V. A. Kapitonov, O. N. Krokhin, A. Yu. Leshko, A. V. Lyutetskii, A. V. Murashova, T. A. Nalet, D. N. Nikolaev, N. A. Pikhtin, Yu. M. Popov, S. O. Slipchenko, A. L. Stankevich, N. V. Fetisova, V. V. Shamakhov, and I. S. Tarasov, Fiz. Tekh. Poluprovodn. 42(3), 357 (2008) [Semiconductors 42, 350 (2008)].

    Google Scholar 

  19. T. Fukunaga, M. Wada, and T. Hayakawa, Jpn. J. Appl. Phys. 38(pt 2, 4A), L387 (1999).

    Article  ADS  Google Scholar 

  20. T. Fukunaga, M. Wada, H. Asano, and T. Hayakawa, Jpn. J. Appl. Phys. 34(pt 2, 9B), L1175 (1995).

    Article  ADS  Google Scholar 

  21. L. J. Mawst, S. Rusli, A. Al-Muhanna, and J. K. Wade, IEEE J. Select. Topics Quant. Electron. 5(3), 785 (1999).

    Article  Google Scholar 

  22. D. A. Vinokurov, S. A. Zorina, V. A. Kapitonov, A. V. Murashova, D. N. Nikolaev, A. L. Stankevich, M. A. Khomylev, V. V. Shamakhov, A. Yu. Leshko, A. V. Lyutetskii, T. A. Nalet, N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, N. V. Fetisova, and I. S. Tarasov, Fiz. Tekh. Poluprovodn. 39(3), 388 (2005) [Semiconductors 39, 370 (2005)].

    Google Scholar 

  23. R. W. Lambert, T. Ayling, A. F. Hendry, J. M. Carson, D. A. Barrow, S. McHendry, C. J. Scott, A. McKee, and W. Meredith, J. Lightwave Technol. 24(2), 956 (2006).

    Article  ADS  Google Scholar 

  24. P. Alnot, C. Grattepain, A. Huber, F. Wyczisk, J. Bourgoin, D. Vuillaume, R. Joubart, and J. F. Peray, Le Vide, les Couches Minces 43(241), 287 (1988).

    Google Scholar 

  25. N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, A. L. Stankevich, D. A. Vinokurov, I. S. Tarasov, and Zh. I. Alferov, Electron. Lett. 40(22), 1413 (2004).

    Article  Google Scholar 

  26. S. O. Slipchenko, A. D. Bondarev, D. A. Vinokurov, D. N. Nikolaev, N. V. Fetisova, Z. N. Sokolova, N. A. Pikhtin, and I. S. Tarasov, Fiz. Tekh. Poluprovodn. 43(1), 119 (2009) [Semiconductors 43 (2009, in print)].

    Google Scholar 

  27. B. S. Ryvkin and E. A. Avrutin, J. Appl. Phys. 97(11), 113106 (2005).

    Google Scholar 

  28. E. G. Golikova, V. A. Gorbylev, Yu. V. Il’in, V. A. Kureshov, A. Yu. Leshko, A. V. Lyutetskii, N. A. Pikhtin, Yu. A. Ryaboshtan, V. A. Simakov, I. S. Tarasov, E. A. Tret’yakova, and N. V. Fetisova, Pis’ma Zh. Tekh. Fiz. 26(6), 57 (2000) [Tech. Phys. Lett. 26, 444 (2000)].

    Google Scholar 

  29. A. Yu. Leshko, A. V. Lyutetskii, N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, N. V. Fetisova, E. G. Golikova, Yu. A. Ryaboshtan, and I. S. Tarasov, Fiz. Tekh. Poluprovodn. 36(11), 1393 (2002) [Semiconductors 36, 1308 (2002)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shamakhov.

Additional information

Original Russian Text © A.Yu. Andreev, S.A. Zorina, A.Yu. Leshko, A.V. Lyutetskiy, A.A. Marmalyuk, A.V. Murashova, T.A. Nalet, A.A. Padalitsa, N.A. Pikhtin, D.R. Sabitov, V.A. Simakov, S.O. Slipchenko, K.Yu. Telegin, V.V. Shamakhov, I.S. Tarasov, 2009, published in Fizika i Tekhnika Poluprovodnikov, 2009, Vol. 43, No. 4, pp. 543–547.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreev, A.Y., Zorina, S.A., Leshko, A.Y. et al. High-power lasers (γ = 808 nm) based on the AlGaAs/GaAs heterostructures of separate confinement. Semiconductors 43, 519–523 (2009). https://doi.org/10.1134/S1063782609040216

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782609040216

PACS numbers

Navigation