Skip to main content
Log in

Deep levels and electron transport in AlGaN/GaN heterostructures

  • Semiconductor Structures, Interfaces, and Surfaces
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Based on the measurements of current-voltage and capacitance-voltage characteristics and deep-level transient spectroscopy, comparison of the concentration of deep-level centers and conductivity of the channel of the AlGaN/GaN heterostructures grown by molecular beam epitaxy with the use of ammonia as the nitrogen source is carried out. Two types of defects with deep levels are revealed. One type is presumably associated with point defects localized near dislocations, and the other type is associated with the dislocations themselves. An increase in the concentration of the centers with deep levels correlates with an increase in the channel resistivity. The density of the deep-level centers can attain values of ∼1013 cm−2 and lead to compensation of the electron channel at the heterointerface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. X. Jiang and J. Y. Lin, Opto-Electron. Rev. 10, 271 (2002).

    Google Scholar 

  2. O. Ambacher, B. Foutz, J. Smart, et al., J. Appl. Phys. 87, 334 (2000).

    Article  ADS  Google Scholar 

  3. A. Asgari, M. Kalafi, and L. Faraone, J. Appl. Phys. 95, 1185 (2004).

    Article  ADS  Google Scholar 

  4. V. I. Polyakov, P. I. Petrov, O. N. Ermakova, et al., Fiz. Tekh. Poluprovodn. (Leningrad) 23, 125 (1989) [Sov. Phys. Semicond. 23, 76 (1989)].

    Google Scholar 

  5. V. D. Lang, J. Appl. Phys. 45, 3023 (1974).

    Article  ADS  Google Scholar 

  6. D. Poss, Appl. Phys. Lett. 37, 413 (1980).

    Article  ADS  Google Scholar 

  7. W. Schroter and H. Cerva, Solid State Phenom. 85–86, 64 (2002).

    Google Scholar 

  8. Z.-Q. Fang, D. C. Look, X.-L. Wang, et al., Appl. Phys. Lett. 82, 1562 (2003).

    Article  ADS  Google Scholar 

  9. L. Lee, F. C. Chang, H. M. Chung, et al., Chin. J. Phys. (Taipei) 40, 424 (2002).

    Google Scholar 

  10. K. Hofmann and M. Schulz, J. Electrochem. Soc. 132, 2201 (1985).

    Article  Google Scholar 

  11. J. Osaka, Y. Ohno, S. Kishimoto, et al., Appl. Phys. Lett. 87, 222 112 (2005).

    Article  Google Scholar 

  12. A. Hierro, A. R. Arehart, B. Heying, et al., Phys. Status Solidi B 228, 309 (2001).

    Article  ADS  Google Scholar 

  13. L. Lymperakis, J. Neugebauer, M. Albrecht, et al., Phys. Rev. Lett. 93, 196401 (2004).

    Google Scholar 

  14. N. A. Cherkashin, N. A. Bert, Yu. G. Musikhin, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 34, 903 (2000) [Semiconductors 34, 867 (2000)].

    Google Scholar 

  15. V. G. Mansurov, A. Yu. Nikitin, Yu. G. Galitsyn, et al., J. Cryst. Growth 300, 145 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.V. Antonova, V.I. Polyakov, A.I. Rukavishnikov, V.G. Mansurov, K.S. Zhuravlev, 2008, published in Fizika i Tekhnika Poluprovodnikov, 2008, Vol. 42, No. 1, pp. 53–59.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonova, I.V., Polyakov, V.I., Rukavishnikov, A.I. et al. Deep levels and electron transport in AlGaN/GaN heterostructures. Semiconductors 42, 52–58 (2008). https://doi.org/10.1134/S1063782608010077

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782608010077

PACS numbers

Navigation