Skip to main content
Log in

Raman scattering in semiconductor structures based on monophthalocyanine and triphthalocyanine molecules incorporating erbium ions

  • Amorphous, Vitreous, Porous, Organic, and Microcrystalline Semiconductors; Semiconductor Composites
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Semiconductor structures of the type of butyl-substituted erbium monophthalocyanine and triphthalocyanine are studied by Raman spectroscopy. It is shown that, when the sandwich-like structure of the molecule incorporating two complexing atoms between the ligands is considered instead of the planar molecular structure with one ligand and one metal atom, a series of lines appears in the Raman spectrum. In this series, the wave numbers of the lines represent an arithmetic progression with the arithmetical ratio ∼80 cm−1. It is suggested that this feature is due to the larger number of organic molecules per metal atom in the triphthalocyanine complex, and the four Raman peaks at the frequencies 122, 208, 280, and 362 cm−1 are the manifestation of slight out-of-plane vibrations of the phthalocyanine ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals (Clarendon, Oxford, 1982; Mir, Moscow, 1985).

    Google Scholar 

  2. G. N. Meshkova, A. T. Vartanyan, and A. N. Sidorov, Opt. Spektrosk. 43, 262 (1977) [Opt. Spectrosc. 43, 151 (1977)].

    Google Scholar 

  3. D. Xie, Y. Jiang, W. Pan, et al., Sens. Actuators B 81, 210 (2002).

    Article  Google Scholar 

  4. D. Xie, W. Pan, Y. D. Jiang, and Y. R. Li, Mater. Lett. 57, 2395 (2003).

    Article  Google Scholar 

  5. A. V. Ziminov, S. M. Ramsh, E. I. Terukov, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 40, 1161 (2006) [Semiconductors 40, 1131 (2006)].

    Google Scholar 

  6. N. Ishikawa, T. Lino, and Y. Kaizu, J. Am. Chem. Soc. 124, 11 440 (2002).

    Google Scholar 

  7. V. E. Pushkarev, M. O. Breusova, E. V. Shulishov, and Yu. V. Tomilov, Russ. Chem. Bull. Int. Ed. 54, 2087 (2005).

    Article  Google Scholar 

  8. D. A. Tsirkunov, in Proceedings of 16th International Crimean Conference on Microwave and Telecommunication Technology (Sevastopol, Ukraine, 2006), p. 683.

    Google Scholar 

  9. F. Lu, J. Cui, and X. Yan, Spectrochim. Acta A 63, 550 (2006).

    Article  Google Scholar 

  10. M. Bao, R. Wang, L. Rintoul, et al., Vibr. Spectrosc. 40, 47 (2006).

    Article  Google Scholar 

  11. M. Bao, Y. Bian, L. Rintoul, et al., Vibr. Spectrosc. 34, 283 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Belogorokhov.

Additional information

Original Russian Text © I.A. Belogorokhov, E.V. Tikhonov, M.O. Breusova, V.E. Pushkarev, A.V. Zoteev, L.G. Tomilova, D.R. Khokhlov, 2007, published in Fizika i Tekhnika Poluprovodnikov, 2007, Vol. 41, No. 11, pp. 1381–1383.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belogorokhov, I.A., Tikhonov, E.V., Breusova, M.O. et al. Raman scattering in semiconductor structures based on monophthalocyanine and triphthalocyanine molecules incorporating erbium ions. Semiconductors 41, 1361–1363 (2007). https://doi.org/10.1134/S1063782607110164

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782607110164

PACS numbers

Navigation