Skip to main content
Log in

Nonlinear-optical effects in semiconductor lasers based on InGaAs/GaAs/AlGaAs quantum-confinement heterostructures

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Generation of a difference-frequency wave by two electromagnetic waves propagating in a heterolaser is analyzed theoretically. Calculations are carried out for InGaAs/GaAs/AlGaAs heterostructures of design optimized to attain maximum lasing power. It is shown that phase matching between the primary waves and the difference-frequency wave may persist over a distance of ∼1 mm, comparable to the cavity length (2–3 mm), and the conversion coefficient can be as large as several percent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Dmitriev and L. V. Tarasov, Applied Nonlinear Optics (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  2. Handbook of Physical Quantities, Ed. by I. S. Grigor’ev and E. Z. Meĭlikhov (Énergoatomizdat, Moscow, 1991; CRC Press, Boca Raton, N.Y., 1997).

    Google Scholar 

  3. Y. Kaneko, S. Nakagawa, Y. Ichimura, et al., J. Appl. Phys. 87, 1597 (2000).

    Article  ADS  Google Scholar 

  4. T. Taniuchi and H. Nakanishi, J. Appl. Phys. 95, 7588 (2004).

    Article  ADS  Google Scholar 

  5. V. Ya. Aleshkin, A. A. Afonenko, and N. B. Zvonkov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 35, 1256 (2001) [Semiconductors 35, 1203 (2001)].

    Google Scholar 

  6. A. A. Afonenko, V. Ya. Aleshkin, and A. A. Dubinov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 38, 244 (2004) [Semiconductors 38, 239 (2004)].

    Google Scholar 

  7. S. Hoffmann, M. Hofmann, M. Kira, and S. W. Koch, Semicond. Sci. Technol. 20, S205 (2005).

    Article  ADS  Google Scholar 

  8. A. A. Afonenko, V. Ya. Aleshkin, and A. A. Dubinov, Semicond. Sci. Technol. 20, 357 (2005).

    Article  ADS  Google Scholar 

  9. V. Ya. Aleshkin, B. N. Zvonkov, S. M. Nekorkin, and Vl. V. Kocharovskiĭ, Fiz. Tekh. Poluprovodn. (St. Petersburg) 39, 171 (2005) [Semiconductors 39, 156 (2005)].

    Google Scholar 

  10. S. O. Slipchenko, Z. N. Sokolova, N. A. Pikhtin, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 40, 1017 (2006) [Semiconductors 40, 990 (2006)].

    Google Scholar 

  11. D. A. Vinokurov, S. A. Zorina, V. A. Kapitonov, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 39, 388 (2005) [Semiconductors 39, 370 (2005)].

    Google Scholar 

  12. N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, et al., Electron. Lett. 40, 1413 (2004).

    Article  Google Scholar 

  13. N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, and I. S. Tarasov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 38, 374 (2004) [Semiconductors 38, 360 (2004)].

    Google Scholar 

  14. S. O. Slipchenko, D. A. Vinokurov, N. A. Pikhtin, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 38, 1477 (2004) [Semiconductors 38, 1430 (2004)].

    Google Scholar 

  15. A. I. Kovrighin, D. V. Yakovlev, B. V. Zhdanov, and N. I. Zheludev, Opt. Commun. 35, 92 (1980).

    Article  ADS  Google Scholar 

  16. P. G. Eliseev, Introduction to the Physics of Injection Lasers (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  17. R. F. Kazarinov, O. V. Konstantinov, V. I. Perel’, and A. L. Éfros, Fiz. Tverd. Tela (Leningrad) 7, 1506 (1965) [Sov. Phys. Solid State 7, 1210 (1965)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.S. Averkiev, S.O. Slipchenko, Z.N. Sokolova, N.A. Pikhtin, I.S. Tarasov, 2007, published in Fizika i Tekhnika Poluprovodnikov, 2007, Vol. 41, No. 3, pp. 372–375.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Averkiev, N.S., Slipchenko, S.O., Sokolova, Z.N. et al. Nonlinear-optical effects in semiconductor lasers based on InGaAs/GaAs/AlGaAs quantum-confinement heterostructures. Semiconductors 41, 361–364 (2007). https://doi.org/10.1134/S1063782607030220

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782607030220

PACS numbers

Navigation