Skip to main content
Log in

The mechanism of current flow in an alloyed In-GaN ohmic contact

  • Semiconductor Structures, Interfaces, and Surfaces
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The resistance of alloyed In-GaN ohmic contact is studied experimentally. In the temperature range 180–320 K, the resistance per unit area increases with temperature, which is typical of metallic conduction and disagrees with current flow mechanisms associated with thermionic, field-effect, or thermal field emission. It is assumed that In-GaN ohmic contact is formed by conducting shunts arising due to precipitation of In atoms on dislocations. As determined from the temperature dependence of the contact resistance, the number of shunts per unit contact area is ∼(107–108) cm−2, which is close to the dislocation density of 108 cm−2 measured in the initial material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. H. Rhoderick, Metal-Semiconductor Contacts (Clarendon, Oxford, 1978; Radio i Svyaz’, Moscow, 1982).

    Google Scholar 

  2. A. Y. C. Yu, Solid-State Electron. 13, 239 (1970).

    Article  Google Scholar 

  3. F. Ren, C. B. Vartuli, S. J. Pearton, et al., J. Vac. Sci. Technol. A 15, 802 (1997).

    Article  ADS  Google Scholar 

  4. Dae-Woo Kim and Hong Koo Baik, Appl. Phys. Lett. 77, 1011 (2000).

    Article  ADS  Google Scholar 

  5. A. Katz, S. Nakahara, W. Savin, and B. E. Weir, J. Appl. Phys. 68, 4133 (1990).

    Article  ADS  Google Scholar 

  6. T. Clausen and O. Leistiko, Appl. Phys. Lett. 62, 1108 (1993).

    Article  ADS  Google Scholar 

  7. S. N. G. Chu, A. Katz, T. Boone, et al., J. Appl. Phys. 67, 3754 (1990).

    Article  ADS  Google Scholar 

  8. H. Shimawaki, N. Furuhata, and K. Honjo, J. Appl. Phys. 69, 7939 (1991).

    Article  ADS  Google Scholar 

  9. K. Ip, Y. W. Heo, K. H. Baik, et al., Appl. Phys. Lett. 84, 544 (2004).

    Article  ADS  Google Scholar 

  10. L. L. Smith, R. F. Davis, M. J. Kim, et al., J. Mater. Res. 11, 2257 (1996).

    ADS  Google Scholar 

  11. L. F. Lester, J. M. Brown, J. C. Ramer, et al., Appl. Phys. Lett. 69, 2737 (1996).

    Article  ADS  Google Scholar 

  12. Properties Advanced Semiconductor Materials, Ed. by M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur (Wiley, New York, 2001).

    Google Scholar 

  13. H. Morkoc, S. Strike, G. B. Gao, et al., J. Appl. Phys. 76, 1363 (1994).

    Article  ADS  Google Scholar 

  14. M. E. Lin, Z. Ma, F. Y. Huang, et al., Appl. Phys. Lett. 64, 1003 (1994).

    Article  ADS  Google Scholar 

  15. S. Prakashs, L. S. Tan, K. M. Ng, et al., in Abstracts of International Conference on SiC and Related Materials (Sheraton, 1999), p. 48.

  16. J. D. Guo, C. I. Lin, M. S. Feng, et al., Appl. Phys. Lett. 68, 235 (1996).

    Article  ADS  Google Scholar 

  17. Z. Fan, S. N. Mohammad, W. Kim, et al., Appl. Phys. Lett. 68, 1672 (1996).

    Article  ADS  Google Scholar 

  18. Changzhi Lu, Hongnai Chen, Xiaoliang Lv, et al., J. Appl. Phys. 91, 9218 (2002).

    Article  ADS  Google Scholar 

  19. K. Suzue, S. N. Mohammad, Z. F. Fan, et al., J. Appl. Phys. 80, 4467 (1996).

    Article  ADS  Google Scholar 

  20. S. N. Mohammad, J. Appl. Phys. 95, 7940 (2004).

    Article  ADS  Google Scholar 

  21. J.-S. Jang and T.-Y. Seong, Appl. Phys. Lett. 76, 2743 (2000).

    Article  ADS  Google Scholar 

  22. Joon Seop Kwak, Ok-Hyun Nam, and Yongjo Park, J. Appl. Phys. 95, 5917 (2004).

    Article  ADS  Google Scholar 

  23. T. V. Blank, Yu. A. Gol’dberg, O. V. Konstantinov, et al., Pis’ma Zh. Tekh. Fiz. 30(19), 17 (2004) [Tech. Phys. Lett. 30, 806 (2004)].

    Google Scholar 

  24. P. Visconti, K. M. Jones, M. A. Reshchikov, et al., Appl. Phys. Lett. 77, 3532 (2000).

    Article  ADS  Google Scholar 

  25. W. Götz, N. M. Johnson, C. Chen, et al., Appl. Phys. Lett. 68, 3144 (1996).

    Article  ADS  Google Scholar 

  26. J. D. Guo, M. S. Feng, R. J. Guo, et al., Appl. Phys. Lett. 67, 2657 (1995).

    Article  ADS  Google Scholar 

  27. E. J. Miller, D. M. Schaadt, E. T. Yu, et al., J. Appl. Phys. 94, 7611 (2003).

    Article  ADS  Google Scholar 

  28. E. J. Miller, E. T. Yu, P. Waltereit, and J. S. Speck, Appl. Phys. Lett. 84, 535 (2004).

    Article  ADS  Google Scholar 

  29. Chin-Yuan Hsu, Wen-How Lan, and Yew Chung Sermon Wu, Jpn. J. Appl. Phys., Part 1 44, 7424 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © T.V. Blank, Yu.A. Gol’dberg, O.V. Konstantinov, V.G. Nikitin, E.A. Posse, 2006, published in Fizika i Tekhnika Poluprovodnikov, 2006, Vol. 40, No. 10, pp. 1204–1208.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blank, T.V., Gol’dberg, Y.A., Konstantinov, O.V. et al. The mechanism of current flow in an alloyed In-GaN ohmic contact. Semiconductors 40, 1173–1177 (2006). https://doi.org/10.1134/S1063782606100095

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782606100095

PACS numbers

Navigation