Skip to main content
Log in

Temperature Dependence and High-Temperature Stability of the Annealed Ni/Au Ohmic Contact to p-Type GaN in Air

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report on the temperature-dependent contact resistivity and high-temperature stability of the annealed Ni/Au ohmic contacts to p-type GaN in air. As the measure temperature increases from 25°C to 390°C, both the specific contact resistivity (ρ c) and sheet resistance (R sh) decrease by factors ∼10, contributing to the 10-fold increase in current at 390°C compared with that at 25°C. It was also observed that the ρ c was further reduced by 36%, i.e., from 2.2 × 10−3 Ω cm2 to 1.4 × 10−3 Ω cm2, during the 48-h high-temperature stability test at 450°C in air, showing excellent stability of the contacts. An increase in ρ c was observed after the contacts were subjected to 500°C in air. Higher temperature stress led to a significant increase in ρ c. The contacts show rectifying I–V characteristics after being subjected to 700°C for 1 h. The degradation mechanics were analyzed with the assistance of transmission electron microscopy and energy dispersive x-ray spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G. Neudeck, R.S. Okojie, and L.-Y. Chen, Proc. IEEE 90, 1065 (2002).

    Article  Google Scholar 

  2. H.A. Mantooth, M.M. Mojarradi, and R.W. Johnson, IEEE Power Electron. Soc. Newslett. 18, 9 (2006).

    Google Scholar 

  3. R.W. Johnson, J.L. Evans, P. Jacobsen, J.R. Thompson, and M. Christopher, IEEE Trans. Electron. Packag. Manuf. 27, 164 (2004).

    Article  Google Scholar 

  4. W.J. Pulliam, P.M. Russler, and R.S. Fielder, Proc. SPIE 4578, 229 (2002).

    Article  Google Scholar 

  5. T. George, K.-A. Son, R.A. Powers, L.Y. Del Castillo, and R. Okojie, 2005 IEEE Sensors (2005).

  6. A. Luque and A. MartíSol. Energy Mater. Sol. Cells 58, 147 (1999).

    Article  Google Scholar 

  7. Y. Yang, W. Yang, W. Tang, and C. Sun, Appl. Phys. Lett. 103, 083902 (2013).

    Article  Google Scholar 

  8. M. Hou and D.G. Senesky, Appl. Phys. Lett. 105, 081905 (2014).

    Article  Google Scholar 

  9. F. Lin, B. Shen, S. Huang, F.J. Xu, L. Lu, J. Song, F.H. Mei, N. Ma, Z.X. Qin, and G.Y. Zhang, J. Appl. Phys. 105, 093702 (2009).

    Article  Google Scholar 

  10. F. Iucolano, F. Roccaforte, A. Alberti, C. Bongiorno, S.D. Franco, and V. Raineri, J. Appl. Phys. 100, 123706 (2006).

    Article  Google Scholar 

  11. J.K. Sheu, Y.K. Su, G.C. Chi, P.L. Koh, M.J. Jou, C.M. Chang, C.C. Liu, and W.C. Hung, Appl. Phys. Lett. 74, 2340 (1999).

    Article  Google Scholar 

  12. J.-K. Ho, C.-S. Jong, C.C. Chiu, C.-N. Huang, C.-Y. Chen, and K.-K. Shih, Appl. Phys. Lett. 74, 1275 (1999).

    Article  Google Scholar 

  13. J.-K. Ho, C.-S. Jong, C.C. Chiu, C.-N. Huang, K.-K. Shih, L.-C. Chen, F.-R. Chen, and J.-J. Kai, J. Appl. Phys. 86, 4491 (1999).

    Article  Google Scholar 

  14. L.-C. Chen, J.-K. Ho, C.-S. Jong, C.C. Chiu, K.-K. Shih, F.-R. Chen, J.-J. Kai, and L. Chang, Appl. Phys. Lett. 76, 3703 (2000).

    Article  Google Scholar 

  15. S. Zhao, Y. Shi, H. Li, and Q. He, Nucl. Instrum. Methods Phys. Res. Sect. B 268, 1435 (2010).

    Article  Google Scholar 

  16. H. Omiya, F.A. Ponce, H. Marui, S. Tanaka, and T. Mukai, Appl. Phys. Lett. 85, 6143 (2004).

    Article  Google Scholar 

  17. G.K. Reeves and H.B. Harrison, IEEE Electron Device Lett. 3, 111 (1982).

    Article  Google Scholar 

  18. D. Steigerwald, S. Rudaz, H. Liu, R.S. Kern, W. Götz, and R. Fletcher, JOM 49, 18 (1997).

    Article  Google Scholar 

  19. D. Sawdai, D. Pavlidis, and D. Cui, IEEE Trans. Electron Devices 46, 1302 (1999).

    Article  Google Scholar 

  20. I. Daumiller, C. Kirchner, M. Kamp, K.J. Ebeling, and E. Kohn, IEEE Electron Device Lett. 20, 448 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

The work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under award number DE-AR0000470.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirong Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., McFavilen, H., Wang, S. et al. Temperature Dependence and High-Temperature Stability of the Annealed Ni/Au Ohmic Contact to p-Type GaN in Air. J. Electron. Mater. 45, 2087–2091 (2016). https://doi.org/10.1007/s11664-015-4278-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4278-3

Keywords

Navigation