Skip to main content
Log in

Correlation dependences in infrared spectra of metal phthalocyanines

  • Electronic and Optical Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Metal-phthalocyanine (MPc) complexes CoPc, CuPc, CuPcCl15–16, CuPc(4-NO2-5-OPh)4, CuPc(4-CH2-phthalimide)4, CuPc(4-NO2-5-NHPhBr)4, PdPc, MgPc, PbPc, EuOAcPc, SmOAcPc, SmPc2, and YOAcPc were obtained and studied using IR spectroscopy. The correlation between the shift of the absorption band maximum in the range of 1100–1600 cm−1 and the atomic radius of template metal is found. It is shown that the planarity of the macrocycle of peripherally substituted CuPc can be estimated from the characteristics of the IR spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.Yu. Denisyuk and N. V. Kamanina, Opt. Spektrosk. 96, 269 (2004) [Opt. Spectrosc. 96, 235 (2004)].

    Article  Google Scholar 

  2. J. Simon and J.-J. Andre, Molecular Semiconductors (Springer, Berlin, 1985; Mir, Moscow, 1988).

    Google Scholar 

  3. B. D. Berezin, M. B. Berezin, A. N. Moryganov, et al., Zh. Prikl. Khim. (St. Petersburg) 76, 2008 (2003).

    Google Scholar 

  4. B. D. Berezin, Coordination Compounds of Porphyrines and Phthalocyanines (Nauka, Moscow, 1978), p. 52 [in Russian].

    Google Scholar 

  5. M. Stillman, J. Mack, and N. Kobayashi, J. Porphyr. Phthaloc. 6, 296 (2002).

    Article  Google Scholar 

  6. D. Frackowiak, R.-M. Jon, and A. Waszkowiak, J. Phys. Chem. B 106, 13154 (2002).

    Article  Google Scholar 

  7. K. M. Unni and G. S. Menon, J. Mater. Sci. Lett. 20, 1207 (2001).

    Article  Google Scholar 

  8. N. L. Ulitskiĭ, E. P. Snegirev, and P. L. Personov, Opt. Spektrosk. 92, 931 (2002) [Opt. Spectrosc. 92, 859 (2002)].

    Google Scholar 

  9. J. Mack and M. Stillman, in The Porphyrin Handbook, Ed. by K. M. Kadish, K. M. Smith, and R. Guilard (Academic, New York, 2003), Vol. 16, p. 43.

    Google Scholar 

  10. T. Schwieger, H. Peisert, M. S. Golden, et al., Phys. Rev. B 66, 155207/1 (2002).

  11. A. Ogunsipe, D. Marel, and T. Nyokong, J. Mol. Struct. 650, 131 (2003).

    Article  ADS  Google Scholar 

  12. O. G. Lutsenko, V. P. Kulinich, and G. G. Shaposhnikov, Zh. Obshch. Khim. 73, 1463 (2003).

    Google Scholar 

  13. M. Calvete, G. J. Jang, and M. Hanack, Synth. Met. 14, 231 (2004).

    Article  Google Scholar 

  14. H. Abramczyk, Z. Szymezyk, G. Walieszews, and A. Zibioda, J. Phys. Chem. 108, 2646 (2004).

    Google Scholar 

  15. N. V. Kamanina and I. Yu. Denisyuk, Opt. Spectrosc. 96, 77 (2004).

    Article  ADS  Google Scholar 

  16. G. A. Kumar, Mater. Lett. 55, 364 (2002).

    Article  Google Scholar 

  17. J. Naoto and K. Youkon, J. Porphyr. Phthaloc. 3, 514 (1999).

    Article  Google Scholar 

  18. M. Patel, R. Vaidya, M. Dave, et al., J. Pure Appl. Phys. 42(2), 79 (2004).

    Google Scholar 

  19. V. N. Nemykin and S. V. Volkov, Koord. Khim. 26, 465 (2000).

    Google Scholar 

  20. A. T. Davidson, J. Chem. Phys. 77, 168 (1982).

    Article  ADS  Google Scholar 

  21. J. Jiang and D. P. Arnold, and H. Yu, Polyhedron, 18, 2129 (1999).

    Article  Google Scholar 

  22. J. Jiang, R. C. W. Ziu, T. C. W. Mak, et al., Polyhedron 16, 515 (1997).

    Article  Google Scholar 

  23. L. T. Lin, H. S. Kwok, and A. B. Djuršic, J. Phys. D 37, 678 (2004).

    Article  ADS  Google Scholar 

  24. J. Veksimakha, Synth. Met. 109, 287 (2000).

    Article  Google Scholar 

  25. X. Zhang, Y. Zhang, and J. Jiang, Spectrochim. Acta A 60, 2195 (2004).

    Article  Google Scholar 

  26. F. Lu, M. Bao, C. Ma, et al., Spectrochim. Acta A 59, 3273 (2003).

    Article  Google Scholar 

  27. E. N. Tkacheva, A. V. Ziminov, L. I. Rudaya, et al., in Proceedings of IV International Conference on Amorphous and Microcrystalline Semiconductors (St. Petersburg, Russia, 2004), p. 190.

    Google Scholar 

  28. L. P. Shklover and V. E. Plyushchev, Zh. Neorg. Khim. 9, 340 (1964).

    Google Scholar 

  29. L. A. Kozitsina and N. B. Kupletskaya, Application of UV, IR, and NMR Spectroscopy to Organic Chemistry (Vysshaya Shkola, Moscow, 1971) [in Russian].

    Google Scholar 

  30. L. J. Bellamy, The Infra-Red Spectra of Complex Molecules, 2nd ed. (Barnes and Noble, New York, 1958; Inostrannaya Literatura, Moscow, 1963).

    Google Scholar 

  31. R. Silverstein, H. Bassler, and T. Morrill, Spectrometric Identification of Organic Compounds (Wiley, New York, 1974; Mir, Moscow, 1977).

    Google Scholar 

  32. V. E. Maĭzlish, Doctoral Dissertation (Ivanovo State Univ. of Chemical Technology, Ivanovo, Russia, 2001).

    Google Scholar 

  33. B. F. Ioffe, R. R. Kostikov, and V. V. Razin, Physical Methods of Determination of Organic Molecule Structures (Leningr. Gos. Univ., Leningrad, 1976) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Ziminov, S.M. Ramsh, E.I. Terukov, I.N. Trapeznikova, V.V. Shamanin, TA. Yurre, 2006, published in Fizika i Tekhnika Poluprovodnikov, 2006, Vol. 40, No. 10, pp. 1161–1166.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziminov, A.V., Ramsh, S.M., Terukov, E.I. et al. Correlation dependences in infrared spectra of metal phthalocyanines. Semiconductors 40, 1131–1136 (2006). https://doi.org/10.1134/S1063782606100022

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782606100022

PACS numbers

Navigation