Skip to main content
Log in

Stability of a Linear Plasma Crystal

  • DUSTY PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract—

The stability of a linear chain of dust particles in an external confining force field is studied. It is assumed that the particles are located in a plasma with Maxwellian electrons with a directed flow of cold ions. It is shown that the aperiodic instability of doubling the chain period can develop in a subsonic flow together with the instability of coupled waves. The region of the crystal stability in the space of external parameters is constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Complex and Dusty Plasmas, Ed. by V. E. Fortov and G. E. Morfill (CRC, Boca Raton, FL, 2010; Fizmatlit, Moscow, 2012).

  2. V. N. Tsytovich, G. E. Morfill, S. V. Vladimirov, and H. M. Thomas, Elementary Physics of Complex Plasmas (Lect. Notes Phys. Vol. 731; Springer, Berlin, 2008).

    Book  Google Scholar 

  3. S. V. Vladimirov, K. Ostrikov, and A. A. Samarian, Physics and Applications of Complex Plasmas (Imperial College Press, London, 2005).

    Book  Google Scholar 

  4. F. Melanso, Phys. Plasmas 3, 3890 (1996).

    Article  ADS  Google Scholar 

  5. S. V. Vladimirov, P. V. Shevchenko, and N. F. Cramer, Phys. Rev. E 56, R74 (1997).

    Article  ADS  Google Scholar 

  6. K. Qiao and T. W. Hide, Phys. Rev. E 71, 026406 (2005).

    Article  ADS  Google Scholar 

  7. S. V. Vladimirov, V. V. Yaroshenko, and G. E. Morfill, Phys. Plasmas 13, 030703 (2006).

    Article  ADS  Google Scholar 

  8. D. N. Klochkov and N. G. Gusein-zade, Plasma Phys. Rep. 33, 646 (2007).

    Article  ADS  Google Scholar 

  9. K. He, H. Chen, and S. Lui, Phys. Plasmas 24, 123705 (2017).

    Article  ADS  Google Scholar 

  10. V. A. Schweigert, I. V. Schweigert, A. Melzer, A. Homann, and A. Piel, Phys. Rev. E 54, 4155 (1996).

    Article  ADS  Google Scholar 

  11. A. V. Ivlev and G. E. Morfill, Phys. Rev. E 63, 016409 (2000).

    Article  ADS  Google Scholar 

  12. V. V. Yaroshenko, A. V. Ivlev, and G. E. Morfill, Phys. Rev. E 71, 046405 (2005).

    Article  ADS  Google Scholar 

  13. J. K. Meyer, I. Laut, S. K. Zhdanov, V. Nosenko, and H. M. Thomas, Phys. Rev. Lett. 119, 255001 (2017).

    Article  ADS  Google Scholar 

  14. A. M. Ignatov, Plasma Phys. Rep. 45, 850 (2019).

    Article  ADS  Google Scholar 

  15. A. Piel, A. Homann, and A. Meltzer, Plasma Phys. Control. Fusion 41, A453 (1999).

    Article  ADS  Google Scholar 

  16. R. Kompaneets, S. V. Vladimirov, A. V. Ivlev, and G. E. Morfill, New J. Phys. 10, 063018 (2008).

    Article  ADS  Google Scholar 

  17. A. M. Ignatov and N. G. Gusein-zade, Nonlinear Theory of Ideal Plasma Instabilities (Lenard, Moscow, 2017) [in Russian].

    Google Scholar 

  18. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Ed. by M. Abramowitz and I. A. Stegun (Dover, New York, 1965; Nauka, Moscow, 1979).

  19. A. M. Ignatov, Plasma Phys. Rep. 43, 1048 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Ignatov.

Additional information

Translated by L. Mosina

Appendices

DERIVATIVES OF THE POTENTIAL OF THE INTERACTION

Since expression (2) determines a function continuous at \(z \approx 0\) and \(\rho > 0\), to calculate force constants (4), it suffices to restrict oneself to the limit \(z \to + 0\). After integration over \({{k}_{z}}\) with allowance for (3) the potential (2) at \(z > 0\) and \(\nu \to + 0\) is written in the form (see [14])

$$U(\rho ,z) = \int\limits_0^\infty \,dk\frac{{k{{q}_{1}}(k)}}{{\beta (k)}}{{e}^{{ - {{q}_{1}}(k)z}}}{{J}_{0}}(k\rho ),$$
(A.1)

where \(\beta (k)\) = \(\sqrt {{{{({{k}^{2}} + {{M}^{2}} - 1)}}^{2}} + 4{{k}^{2}}} \) and \({{q}_{1}}{{(k)}^{2}}\) = \(({{k}^{2}} + {{M}^{2}} - 1 + \beta (k)){\text{/}}2\). For the numerical calculations, it is convenient to explicitly extract the Cou-lomb potential in expression (A.1) by rewriting it in the form

$$\begin{gathered} U(\rho ,z) = \frac{1}{{\sqrt {{{\rho }^{2}} + {{z}^{2}}} }} \\ \, + \int\limits_0^\infty \,dk\left\{ {\frac{{k{{q}_{1}}(k)}}{{\beta (k)}}{{e}^{{ - {{q}_{1}}(k)z}}} - {{e}^{{ - kz}}}} \right\}{{J}_{0}}(k\rho ). \\ \end{gathered} $$
(A.2)

The integrand in (A.2) for \(z = 0\) decreases as \(1{\text{/}}{{k}^{2}}\) at \(k \to \infty \), which makes it possible to use it for the numerical calculations of the force constants (4).

In a purely ionic flow at \(M = 0\), the potential and its derivatives with respect to z can be calculated explicitly,

$$\begin{gathered} {{u}_{{0,0}}} = \frac{1}{a} - \frac{\pi }{2}({{I}_{0}}(a) - {{{\mathbf{L}}}_{0}}(a)), \\ {{u}_{{0,1}}} = {{K}_{0}}(a), \\ {{u}_{{0,2}}} = - \frac{1}{{{{a}^{3}}}} - \frac{1}{a} + \frac{\pi }{2}({{I}_{0}}(a) - {{{\mathbf{L}}}_{0}}(a)), \\ \end{gathered} $$
(A.3)

where \({{I}_{\nu }}(a)\), \({{K}_{\nu }}(a)\), and \({{{\mathbf{L}}}_{\nu }}(a)\) are modified Bessel and Struve functions (e.g., [18]). At \(M > 0\) the integrals are calculated by the standard methods.

HAMILTONIAN FORM OF LINEARIZED EQUATIONS

For a linear chain, the Hamiltonian form of the equation of motion (8) is obtained by a simple change of notation. We denote the horizontal displacements as \({{x}_{1}}(k) = x(k)\) and introduce the corresponding momentum \({{p}_{1}}(k) = \dot {x}(k)\), and for vertical displacements, we swap the places of the coordinate and momentum \({{p}_{2}}(k) = z(k)\) and \({{x}_{2}}(k) = \dot {z}(k)\). Then Eqs. (8) are rewritten in the form

$$\begin{gathered} \mathop {\dot {p}}\nolimits_1 (k) = - {{\Omega }_{x}}{{(k)}^{2}}{{x}_{1}}(k) - ig(k){{p}_{2}}(k) = - \frac{{\delta H}}{{\delta {{x}_{1}}(k){\text{*}}}}, \\ \mathop {\dot {p}}\nolimits_2 (k) = {{x}_{2}}(k) = - \frac{{\delta H}}{{\delta {{x}_{2}}(k){\text{*}}}}, \\ \mathop {\dot {x}}\nolimits_1 (k) = {{p}_{1}}(k) = \frac{{\delta H}}{{\delta {{p}_{1}}(k){\text{*}}}}, \\ \mathop {\dot {x}}\nolimits_2 (k) = - {{\Omega }_{z}}{{(k)}^{2}}{{p}_{2}}(k) - ig(k){{x}_{1}}(k) = \frac{{\delta H}}{{\delta {{p}_{2}}(k){\text{*}}}}, \\ \end{gathered} $$
(B.1)

where the Hamiltonian is

$$\begin{gathered} H = \frac{1}{2}\int {dk} \left\{ {{{{\left| {{{p}_{1}}(k)} \right|}}^{2}} - {{\Omega }_{z}}{{{(k)}}^{2}}{{{\left| {{{p}_{2}}(k)} \right|}}^{2}}} \right. \\ \left. {\, + {{\Omega }_{x}}{{{(k)}}^{2}}{{{\left| {{{x}_{1}}(k)} \right|}}^{2}} - {{{\left| {{{x}_{2}}(k)} \right|}}^{2}} + 2ig(k){{p}_{2}}(k){{x}_{1}}(k){\text{*}}} \right\}. \\ \end{gathered} $$
(B.2)

In the stability region, this expression is a positive definite functional. By calculating the work of external forces on the ensemble of particles (see [19]), it can be shown that Hamiltonian (B.2) cannot be identified with energy. The physical meaning of replacing one of the coordinates with the momentum remains a m-ystery.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatov, A.M. Stability of a Linear Plasma Crystal. Plasma Phys. Rep. 46, 259–264 (2020). https://doi.org/10.1134/S1063780X20030071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20030071

Keywords:

Navigation