Skip to main content
Log in

Nonlinear Dynamics of a Linear Dust Particle Chain

  • DUSTY PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The nonlinear stage of development of the dust particle chain instabilities is studied. It is assumed that dust particles interact with the plasma consisting of Maxwellian electrons and a directed flow of cold ions. The truncated equations are derived describing the nonlinear dynamics of the standing wave in the range of parameters close to the threshold for the development of the instability of coupled waves. It is shown that, in a narrow range of the ion flow Mach numbers, the instability of coupled waves becomes saturated in the weakly nonlinear stage of its development. In the remaining cases, the instability development becomes explosive. The nonlinear dynamics is also considered of the aperiodic period-doubling instability, which always becomes saturated in the weakly nonlinear stage of its development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Complex and Dusty Plasmas: From Laboratory to Space, Ed. by V. E. Fortov and G. E. Morfill (CRC, Boca Raton, FL, 2009).

  2. V. N. Tsytovich, G. E. Morfill, S. V. Vladimirov, and H. M. Thomas, Elementary Physics of Complex Plasmas (Lect. Notes Phys., vol. 731) (Springer, Berlin, 2008).

    Book  Google Scholar 

  3. S. V. Vladimirov, K. Ostrikov, and A. A. Samarian, Physics and Applications of Complex Plasmas (Imperial College Press, London, 2005).

    Book  Google Scholar 

  4. L. Couëdel, V. Nosenko, S. Zhdanov, A. V. Ivlev, I. Laut, E. V. Yakovlev, N. P. Kryuchkov, P. V. Ovcharov, A. M. Lipaev, and S. O. Yurchenko, Phys.–Usp. 62, 1000 (2019).

    Article  Google Scholar 

  5. A. Piel, A. Homann, and A. Melzer, Plasma Phys. Controlled Fusion 41, Suppl. 3A, A453 (1999).

    Article  ADS  Google Scholar 

  6. A. V. Ivlev and G. E. Morfill, Phys. Rev. E 63, 016409 (2000).

  7. V. V. Yaroshenko, A. V. Ivlev, and G. E. Morfill, Phys. Rev. E 71, 046405 (2005).

  8. J. K. Meyer, I. Laut, S. K. Zhdanov, V. Nosenko, and H. M. Thomas, Phys. Rev. Lett. 119, 255001 (2017).

  9. A. M. Ignatov, Plasma Phys. Rep. 46, 259 (2020).

    Article  ADS  Google Scholar 

  10. P. S. Landa, Self-Oscillations in Distributed Systems (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  11. A. C. Newell, Solitons in Mathematics and Physics (S-IAM, Philadelphia, PA, 1985).

    Book  Google Scholar 

  12. A. M. Ignatov, Plasma Phys. Rep. 43, 1072 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Ignatov.

Additional information

Translated by I. Grishina

Appendices

DERIVATIVES OF INTERACTION POTENTIAL

Since the interaction potential (1) is continuous at \(x > 0\) and \(z = 0\), the coefficients (2) can be calculated in the limit of \(z \to + 0\). At \(z > 0\), the potential can be reduced to the following form:

$$U(x,z) = \int\limits_0^\infty \,dk\frac{{kq(k)}}{{\beta (k)}}{{e}^{{ - q(k)z}}}{{J}_{0}}(kx),$$
(A.1)

where \(\beta (k)\) = \(\sqrt {{{{({{k}^{2}} + {{M}^{2}} - 1)}}^{2}} + 4{{k}^{2}}} \) and \(q{{(k)}^{2}}\) = \(({{k}^{2}} + {{M}^{2}} - 1 + \beta (k)){\text{/}}2\). The integral in expression (A.1) converges at \(z = 0\), but its derivatives turn out to be divergent. To regularize these divergences, it is convenient to do the following. The derivatives of potential (A.1) have the following form:

$${{U}^{{(i,j)}}}(x,z) = \int\limits_0^\infty \,dk{{F}^{{(i,j)}}}(k){{e}^{{ - q(k)z}}}J_{0}^{{(i)}}(kx),$$
(A.2)

where \(J_{0}^{{(i)}}(kx)\) is the derivative of the Bessel function of order i, and

$${{F}^{{(i,j)}}}(k) = {{( - 1)}^{j}}\frac{{{{k}^{{i + 1}}}q{{{(k)}}^{{j + 1}}}}}{{\beta (k)}}$$

is the algebraic function of the variable k. At \(k \to \infty \), the expansion of the \({{F}^{{(i,j)}}}(k)\) function has the form of \({{F}^{{(i,j)}}}(k)\) = \({{P}^{{(i,j)}}}(k) + \Delta {{F}^{{(i,j)}}}(k)\), where \({{P}^{{(i,j)}}}(k)\) is the polynomial of finite degree in k, and \(\Delta {{F}^{{(i,j)}}}(k) \to 0\) at \(k \to \infty \). Now, expression (A.2) can be identically rewritten in the form of \({{U}^{{(i,j)}}}(x,z)\) = \({{V}^{{(i,j)}}}(x,z) + \)\(\Delta {{U}^{{(i,j)}}}(x,z)\), where

$$\begin{gathered} {{V}^{{(i,j)}}}(x,z) = \int\limits_0^\infty \,dk{{P}^{{(i,j)}}}(k){{e}^{{ - kz}}}J_{0}^{{(i)}}(kx), \\ \Delta {{U}^{{(i,j)}}}(x,z) \\ \, = \int\limits_0^\infty \,dk\left[ {{{F}^{{(i,j)}}}(k){{e}^{{ - q(k)z}}} - {{P}^{{(i,j)}}}(k){{e}^{{ - kz}}}} \right]J_{0}^{{(i)}}(kx). \\ \end{gathered} $$
(A.3)

The first integral can be calculated analytically, and then we set \(z \to 0\), and the second integral converges at \(z = 0\). Thus, coefficients (2) can be written as \({{u}_{{i,j}}} = {{v}_{{i,j}}} + \Delta {{u}_{{i,j}}}\), where the values \(\Delta {{u}_{{i,j}}} = \Delta {{U}^{{(i,j)}}}(a,0)\) can be calculated using the standard numerical methods, and \({{v}_{{0,1}}} = {{v}_{{0,3}}} = 0\), \({{v}_{{i,0}}} = {{( - 1)}^{i}}i!{\text{/}}{{a}^{{i + 1}}}\), \({{v}_{{1,1}}} = - 1{\text{/}}a\), \({{v}_{{2,1}}} = 1{\text{/}}{{a}^{2}}\), \({{v}_{{1,3}}} = 1{\text{/}}a\),

$$\begin{gathered} {{v}_{{0,2}}} = \frac{{{{a}^{2}}\left( {{{M}^{2}} - 2} \right) - 2}}{{2{{a}^{3}}}}, \\ {{v}_{{0,4}}} = \frac{{{{a}^{4}}\left( {3{{M}^{4}} - 8{{M}^{2}} + 8} \right) + {{a}^{2}}\left( {8 - 12{{M}^{2}}} \right) + 72}}{{8{{a}^{5}}}}, \\ \end{gathered} $$
$${{v}_{{3,1}}} = - \frac{{2{{a}^{2}}{{M}^{2}} + {{a}^{2}} + 4}}{{2{{a}^{3}}}},$$
(A.4)
$$\begin{gathered} {{v}_{{1,2}}} = \frac{{6 - {{a}^{2}}\left( {{{M}^{2}} - 2} \right)}}{{2{{a}^{4}}}}, \\ {{v}_{{2,2}}} = \frac{{{{a}^{2}}\left( {{{M}^{2}} - 2} \right) - 12}}{{{{a}^{5}}}}. \\ \end{gathered} $$

EXPANSION OF FORCE

In the expansion of the force in the equation of motion (4), the quadratic terms have the following form:

$$\begin{gathered} F_{{x,n}}^{{(2)}} = - {{u}_{{2,1}}}\left[ {\delta {{x}_{n}}\delta {{z}_{n}} + \delta {{x}_{{n + 1}}}\delta {{z}_{{n + 1}}}} \right] \\ \, + \frac{1}{2}{{u}_{{3,0}}}\Delta {{x}_{n}}{{\Delta }^{2}}{{x}_{n}} + \frac{1}{2}{{u}_{{1,2}}}\Delta {{z}_{n}}{{\Delta }^{2}}{{z}_{n}}, \\ F_{{z,n}}^{{(2)}} = {{u}_{{1,2}}}\left[ {\delta {{x}_{{n + 1}}}\delta {{z}_{{n + 1}}} - \delta {{x}_{n}}\delta {{z}_{n}}} \right] \\ \, - \;\frac{1}{2}{{u}_{{2,1}}}\left[ {{{{(\delta {{x}_{n}})}}^{2}} + {{{(\delta {{x}_{{n + 1}}})}}^{2}}} \right] \\ - \;\frac{1}{2}{{u}_{{0,3}}}\left[ {{{{(\delta {{z}_{n}})}}^{2}} + {{{(\delta {{z}_{{n + 1}}})}}^{2}}} \right], \\ \end{gathered} $$
(B.1)

where we used notations (5) and \(\delta {{f}_{n}} = {{f}_{n}} - {{f}_{{n - 1}}}\). The cubic terms are as follows:

$$\begin{gathered} F_{{x,n}}^{{(3)}} = - \frac{1}{6}{{u}_{{1,3}}}\left[ {{{{(\delta {{z}_{n}})}}^{3}} + {{{(\delta {{z}_{{n + 1}}})}}^{3}}} \right] \\ \, + \frac{1}{2}{{u}_{{2,2}}}\left[ {\delta {{x}_{{n + 1}}}{{{(\delta {{z}_{{n + 1}}})}}^{2}} - \delta {{x}_{n}}{{{(\delta {{z}_{n}})}}^{2}}} \right] \\ \, - \frac{1}{2}{{u}_{{3,1}}}\left[ {\delta {{z}_{n}}{{{(\delta {{x}_{n}})}}^{2}} + \delta {{z}_{{n + 1}}}{{{(\delta {{x}_{{n + 1}}})}}^{2}}} \right] \\ \end{gathered} $$
$$\begin{gathered} \, + \frac{1}{6}{{u}_{{4,0}}}{{\Delta }^{2}}{{x}_{n}}\left[ {{{{(\delta {{x}_{n}})}}^{2}} + \delta {{x}_{n}}\delta {{x}_{{n + 1}}} + {{{(\delta {{x}_{{n + 1}}})}}^{2}}} \right], \\ F_{{z,n}}^{{(3)}} = - \frac{1}{6}{{u}_{{3,1}}}\left[ {{{{(\delta {{x}_{n}})}}^{3}} + {{{(\delta {{x}_{{n + 1}}})}}^{3}}} \right] \\ \end{gathered} $$
(B.2)
$$\begin{gathered} \, - \frac{1}{2}{{u}_{{1,3}}}\left[ {\delta {{x}_{n}}{{{(\delta {{z}_{n}})}}^{2}} + \delta {{x}_{{n + 1}}}{{{(\delta {{z}_{{n + 1}}})}}^{2}}} \right] \\ \, + \frac{1}{6}{{u}_{{0,4}}}{{\Delta }^{2}}{{z}_{n}}\left[ {{{{(\delta {{z}_{n}})}}^{2}} + \delta {{z}_{n}}\delta {{z}_{{n + 1}}} + {{{(\delta {{z}_{{n + 1}}})}}^{2}}} \right] \\ \, + \frac{1}{2}{{u}_{{2,2}}}\left[ {{{{(\delta {{x}_{{n + 1}}})}}^{2}}\delta {{z}_{{n + 1}}} - {{{(\delta {{x}_{n}})}}^{2}}\delta {{z}_{n}}} \right]. \\ \end{gathered} $$

NONLINEARITY COEFFICIENTS

The coefficients in Eq. (10) are as follows:

$$\begin{gathered} {{\gamma }_{1}} = \frac{{\Omega _{{cr}}^{2}\left( {\cos\left( {{{k}_{0}}} \right) + 1} \right)}}{{8\omega _{0}^{2}}}, \\ {{\gamma }_{3}} = - \frac{{3\Omega _{{cr}}^{2}}}{{32\omega _{0}^{2}}}{{\sin}^{2}}({{k}_{0}})\left[ {\left( {{{u}_{{4,0}}} - {{u}_{{0,4}}}} \right){{\sin}^{2}}({{k}_{0}}{\text{/}}2)} \right. \\ \end{gathered} $$
$$\, + \left. {({{u}_{{1,3}}} + {{u}_{{3,1}}})\sin\left( {{{k}_{0}}} \right)} \right],$$
(C.1)
$$\begin{gathered} {{\beta }_{x}} = \frac{{i\left( {{{u}_{{1,2}}} + {{u}_{{3,0}}}} \right)\Omega _{{{\text{cr}}}}^{2}{{\sin}^{3}}\left( {{{k}_{0}}} \right)}}{{2\omega _{0}^{2}}}, \\ {{\beta }_{z}} = \frac{{\left( {{{u}_{{0,3}}} + {{u}_{{2,1}}}} \right)\Omega _{{{\text{cr}}}}^{2}{{\sin}^{4}}\left( {{{k}_{0}}} \right)}}{{2\omega _{0}^{2}\left( {\cos\left( {{{k}_{0}}} \right) - 1} \right)}}. \\ \end{gathered} $$

The coefficients \(\alpha \) associated with the perturbations corresponding to the second spatial harmonic can be obtained from the solutions of the following sets of linear equations:

$$\begin{gathered} {\mathbf{M}} \cdot \left( {\begin{array}{*{20}{c}} {{{\alpha }_{{x,0}}}} \\ {{{\alpha }_{{z,0}}}} \end{array}} \right) = {\mathbf{T}}, \\ ({\mathbf{M}} - 4\omega _{0}^{2}{\mathbf{I}}) \cdot \left( {\begin{array}{*{20}{c}} {{{\alpha }_{{x,2}}}} \\ {{{\alpha }_{{z,2}}}} \end{array}} \right) = \frac{1}{2}{\mathbf{T}}, \\ \end{gathered} $$
(C.2)

where \({\mathbf{I}}\) is the unity matrix,

$${\mathbf{M}} = \left( {\begin{array}{*{20}{c}} {4si{{n}^{2}}\left( {{{k}_{0}}} \right){{u}_{{2,0}}},}&{2i\sin\left( {2{{k}_{0}}} \right){{u}_{{1,1}}}} \\ {2i\sin\left( {2{{k}_{0}}} \right){{u}_{{1,1}}},}&{4{{u}_{{0,2}}}si{{n}^{2}}\left( {{{k}_{0}}} \right) + \Omega _{{{\text{cr}}}}^{2}} \end{array}} \right)$$

and

$$\begin{gathered} {\mathbf{T}} = \frac{1}{2}si{{n}^{2}}({{k}_{0}}{\text{/}}2) \\ \, \times \left( {\begin{array}{*{20}{c}} {i\left( {\left( {{{u}_{{1,2}}} - {{u}_{{3,0}}}} \right)\sin\left( {{{k}_{0}}} \right) - 2\sigma {{u}_{{2,1}}}\cos({{k}_{0}})} \right)} \\ { - 2\sigma {{u}_{{1,2}}}\sin\left( {{{k}_{0}}} \right) - \left( {{{u}_{{0,3}}} - {{u}_{{2,1}}}} \right)\cos({{k}_{0}})} \end{array}} \right). \\ \end{gathered} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatov, A.M. Nonlinear Dynamics of a Linear Dust Particle Chain. Plasma Phys. Rep. 46, 936–942 (2020). https://doi.org/10.1134/S1063780X20090044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20090044

Keywords:

Navigation