Skip to main content
Log in

Characteristic features of temperature evolution in ultracold plasmas

  • Nonideal Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The theoretical interpretation of recent experiments on the time evolution of the temperature in freely expanding, ultracold plasma clouds released from a magneto-optical trap is discussed. The most interesting result of those experiments was the asymptotic behavior T e t −(1,2±0.1), instead of the behavior proportional to t −2, which was expected for a rarefied monatomic gas in the inertial expansion stage. It is shown that such a substantially slower temperature fall can be well explained by the specific properties of the equation of state of ultracold plasma with a large Coulomb coupling parameter; whereas the heat release in inelastic processes (in particular, three-body recombination) turns out to be relatively unimportant in the first approximation. This conclusion is confirmed by approximate analytic estimates from the model of virializing the energies of charged particles and also by the results of ab initio computer simulations; moreover, the computations demonstrate that the law of decrease in the electron temperature is established very rapidly, when the virialization criterion begins to be satisfied only to within a factor of order unity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Fortov, A. G. Khrapak, and I. T. Yakubov, Physics of Nonideal Plasmas (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  2. T. C. Killian, T. Pattard, T. Pohl, and J. M. Rost, Phys. Rep. 449, 77 (2007).

    Article  ADS  Google Scholar 

  3. C. E. Simien, Y. C. Chen, P. Gupta, et al., Phys. Rev. Lett. 92, 143001 (2004).

    Article  ADS  Google Scholar 

  4. A. N. Tkachev and S. I. Yakovlenko, Pis’ma Zh. Eksp. Teor. Fiz. 73, 71 (2001) [JETP Lett. 73, 66 (2001)].

    Google Scholar 

  5. P. Gould and E. Eyler, Phys. World 14(3), 19 (2001).

    Google Scholar 

  6. S. Bergeson and T. Killian, Phys. World 16(2), 37 (2003).

    Google Scholar 

  7. J. P. Morrison, C. J. Rennick, J. S. Keller, and E. R. Grant, Phys. Rev. Lett. 101, 205005 (2008).

    Article  ADS  Google Scholar 

  8. Yu. V. Dumin, J. Low Temp. Phys. 119, 377 (2000).

    Article  Google Scholar 

  9. Yu. V. Dumin, Astrophys. Space Sci. 277, 139 (2001).

    Article  ADS  MATH  Google Scholar 

  10. J. L. Roberts, C. D. Fertig, M. J. Lim, and S. L. Rolston, Phys. Rev. Lett. 92, 253 003 (2004).

    Google Scholar 

  11. R. S. Fletcher, X. L. Zhang, and S. L. Rolston, Phys. Rev. Lett. 99, 145 001 (2007).

    Article  Google Scholar 

  12. A. V. Lankin and G. E. Norman, J. Phys. A 42, 214042 (2009).

    Article  ADS  Google Scholar 

  13. L. D. Landau and E. M. Lifshitz, Mechanics (Nauka, Moscow, 1973; Pergamon, Oxford, 1976).

    Google Scholar 

  14. L. D. Landau and E. M. Lifshitz, Statistical Physics (Nauka, Moscow, 1976; Pergamon, Oxford, 1980).

    Google Scholar 

  15. R. S. Fletcher, X. L. Zhang, and S. L. Rolston, Phys. Rev. Lett. 96, 105003 (2006).

    Article  ADS  Google Scholar 

  16. A. A. Bobrov, S. Ya. Bronin, B. B. Zelener, et al., Zh. Eksp. Teor. Fiz. 134, 179 (2008) [JETP 107, 147 (2008)].

    Google Scholar 

  17. S. G. Kuzmin and T. M. O’Neil, Phys. Rev. Lett. 88, 065003 (2002).

    Article  ADS  Google Scholar 

  18. S. Mazevet, L. A. Collins, and J. D. Kress, Phys. Rev. Lett. 88, 055001 (2002).

    Article  ADS  Google Scholar 

  19. F. Robicheaux and J. D. Hanson, Phys. Plasmas 10, 2217 (2003).

    Article  ADS  Google Scholar 

  20. T. Pohl, T. Pattard, and J. M. Rost, Phys. Rev. Lett. 92, 155003 (2004).

    Article  ADS  Google Scholar 

  21. F. Robicheaux and J. D. Hanson, Phys. Rev. Lett. 88, 055002 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.V. Dumin, 2011, published in Fizika Plazmy, 2011, Vol. 37, No. 10, pp. 919–927.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumin, Y.V. Characteristic features of temperature evolution in ultracold plasmas. Plasma Phys. Rep. 37, 858–865 (2011). https://doi.org/10.1134/S1063780X11090054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X11090054

Keywords

Navigation