Skip to main content
Log in

Ellipsoid Space Charge Model for Electron Beam Dynamics Simulations

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The pulsed beam current in linear accelerators can approach significant values up to tens of Amperes. Such high currents cause many specific adverse effects in the accelerators. One of such effects is the repelling forces of the space charge as they become comparable to the forces of the electromagnetic accelerating fields, and can influence the stability of phase and radial particle motion. In the numerical analysis of the beam dynamics in linear accelerators, it is necessary to choose one of the different space charge models depending on the desired accuracy, complexity, speed and computer resources availability. The most accurate results are achieved by the numerical solution of the Poisson equation. However, this method may require significant resources and time and may not be suitable when fast analysis is required in the linac design stages. Analytical methods, on the other hands, base on the analytical solution of Poisson equations for the pre-defined shape of the particles distribution inside the beam. One of the most popular analytical space charge models is the ellipsoidal beam approximations. Despite being a well-developed model, many published approaches lack some important features as fully three-dimensional ellipsoid asymmetry and multi-bunch model. In this paper, we will derive the equations of the space charge field for the full-3D non-relativistic ellipsoid bunch step by step, starting from the Poisson equation, and compare this model with the other known models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. F. R. Moulton, An Introduction to Celestial Mechanics, 2nd ed. (MacMillan Co., New York, 1914).

    MATH  Google Scholar 

  2. O. D. Kellogg, Foundations of Potential Theory (Julius Springer, Berlin, 1929).

    Book  Google Scholar 

  3. B. P. Kondratiev, Theory of Potential. New Methods and Problems with Solutions (Mir, Moscow, 2007) [in Russian].

  4. L. N. Sretensky, Theory of Newton’s Potential (Gostekhizdat, Moscow–Leningrad, 1946) [in Russian].

    Google Scholar 

  5. I. M. Kapchinskii, Particle Dynamics in Linear Resonance Accelerators (R. McElroy Co., Austin, TX, 1980).

    Google Scholar 

  6. P. M. Lapostolle, “Effects de la Charge d’Espace dans un Accelerauter Lineaire á Protons,” Preprint AR/Int. SG/65-15 (1965).

  7. G. L. Dirichlet, “Über eine neue Methode zur Bestimmung vielfacher Integrale,” Werke Bd. 1, (5), 404–408 (1939); W. Dittrich, “On Dirichlet’s derivation of the ellipsoid potential” (2016), arXiv:1609.04709v1 [physics.hist-ph].

  8. E. Keil, “Beam-beam interaction in p-p storage rings,” in Theoretical Aspects of the Behavior of Beam: CERN Report 77-13 (1977), p. 314; http://www.iaea.org/inis/ collection/NCLCollectionStore/_Public/09/408/9408436.pdf.

  9. A. Valishev, Practical Beam-Beam Tune Shift Formulae for Simulation Cross-Check: FERMILAB-TM-2573-APC (Fermilab, 2013).

    Book  Google Scholar 

  10. S. V. Kutsaev et al., “Generalized 3D beam dynamics model for industrial traveling wave linacs design and simulations,” Nucl. Instrum. Methods Phys. Res. A 906, 127–140 (2018).

    Article  ADS  Google Scholar 

  11. S. V. Kutsaev, “Electron dynamics simulations with Hellweg 2D Code,” Nucl. Instrum. Methods Phys. Res. A 618, 298–305 (2010).

    Article  ADS  Google Scholar 

Download references

Funding

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Award no. DE-SC0015897.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kutsaev.

Ethics declarations

In this paper, we have provided the detailed analytical solution for the space charge forces inside the non-symmetrical three-dimensional ellipsoid-shaped bunch of the charged particles inside and outside of the bunch core. The presented results generalize and include the commonly used expressions for the space charge [5, 6] and can be readily used in the beam dynamics simulation codes.

Appendices

APPENDIX A

1.1 INTEGRALS FOR THE “COMPRESSED” ELLIPSOID

The integral I0 can be calculated by the following way:

$$\begin{gathered} {{I}_{0}} = \int\limits_\lambda ^\infty {\frac{{d\xi }}{{({{a}^{2}} + \xi )\sqrt {{{c}^{2}} + \xi } }}} \\ = c\int\limits_\lambda ^\infty {\frac{{d({\xi \mathord{\left/ {\vphantom {\xi {{{c}^{2}}}}} \right. \kern-0em} {{{c}^{2}}}})}}{{({{a}^{2}} + {{{{c}^{2}}\xi } \mathord{\left/ {\vphantom {{{{c}^{2}}\xi } {{{c}^{2}}}}} \right. \kern-0em} {{{c}^{2}}}})\sqrt {1 + {\xi \mathord{\left/ {\vphantom {\xi {{{c}^{2}}}}} \right. \kern-0em} {{{c}^{2}}}}} }}} \\ = c\int\limits_{\lambda /{{c}^{2}}}^\infty {\frac{{dt}}{{({{a}^{2}} + {{c}^{2}}t)\sqrt {1 + t} }}.} \\ \end{gathered} $$
(A1)

After the variable substitution

$$y = \sqrt {1 + t} .$$
(A2)

We get

$$\begin{gathered} {{I}_{0}} = c\int\limits_{\sqrt {1 + \lambda /{{c}^{2}}} }^\infty {\frac{{2ydy}}{{[{{a}^{2}} + {{c}^{2}}({{y}^{2}} - 1)]y}}} \\ = \frac{{2c}}{{{{a}^{2}} - {{c}^{2}}}}\int\limits_{\sqrt {1 + \lambda /{{c}^{2}}} }^\infty {\frac{{dy}}{{1 + \frac{{{{c}^{2}}}}{{{{a}^{2}} - {{c}^{2}}}}{{y}^{2}}}}} . \\ \end{gathered} $$
(A3)

Next, the result depends on the fact whether the ellipsoid is “compressed” (a > c) or “stretched” along the rotation axis. In case of the “compressed ellipsoid, the multiplier before y2 in the integral function is positive and thus:

$$\begin{gathered} {{I}_{0}} = \frac{{2c}}{{{{a}^{2}} - {{c}^{2}}}}\sqrt {\frac{{{{a}^{2}} - {{c}^{2}}}}{{{{c}^{2}}}}} \int\limits_{\sqrt {1 + \lambda /{{c}^{2}}} }^\infty {\frac{{d\left( {\sqrt {\frac{{{{c}^{2}}}}{{{{a}^{2}} - {{c}^{2}}}}} y} \right)}}{{1 + {{{\left( {\sqrt {\frac{{{{c}^{2}}}}{{{{a}^{2}} - {{c}^{2}}}}} y} \right)}}^{2}}}}} \\ = \frac{2}{{\sqrt {{{a}^{2}} - {{c}^{2}}} }}\left. {\arctan \frac{c}{{\sqrt {{{a}^{2}} - {{c}^{2}}} }}y} \right|_{{\sqrt {1 + \lambda /{{c}^{2}}} }}^{\infty } \\ = \frac{2}{{\sqrt {{{a}^{2}} - {{c}^{2}}} }}\left( {\frac{\pi }{2} - \arctan \sqrt {\frac{{{{c}^{2}} + \lambda }}{{{{a}^{2}} - {{c}^{2}}}}} } \right) \\ = \frac{2}{{\sqrt {{{a}^{2}} - {{c}^{2}}} }}\arccos \sqrt {{{\frac{{{{c}^{2}} + \lambda }}{{{{a}^{2}} - {{c}^{2}}}}} \mathord{\left/ {\vphantom {{\frac{{{{c}^{2}} + \lambda }}{{{{a}^{2}} - {{c}^{2}}}}} {\left( {1 + \frac{{{{c}^{2}} + \lambda }}{{{{a}^{2}} - {{c}^{2}}}}} \right)}}} \right. \kern-0em} {\left( {1 + \frac{{{{c}^{2}} + \lambda }}{{{{a}^{2}} - {{c}^{2}}}}} \right)}}} . \\ \end{gathered} $$
(A4)

Or

$${{I}_{0}} = \frac{2}{{\sqrt {{{a}^{2}} - {{c}^{2}}} }}\arccos \sqrt {\frac{{{{c}^{2}} + \lambda }}{{{{a}^{2}} + \lambda }}} .$$
(A5)

Then, we’ll find Ixy for the compressed ellipsoid by applying the variables substation used for I0

$$\begin{gathered} {{I}_{{xy}}} = \int\limits_\lambda ^\infty {\frac{{d\xi }}{{{{{({{a}^{2}} + \xi )}}^{2}}\sqrt {{{c}^{2}} + \xi } }}} \\ = c\int\limits_\lambda ^\infty {\frac{{d({\xi \mathord{\left/ {\vphantom {\xi {{{c}^{2}}}}} \right. \kern-0em} {{{c}^{2}}}})}}{{{{{({{a}^{2}} + {{c}^{2}}{\xi \mathord{\left/ {\vphantom {\xi {{{c}^{2}}}}} \right. \kern-0em} {{{c}^{2}}}})}}^{2}}\sqrt {1 + {\xi \mathord{\left/ {\vphantom {\xi {{{c}^{2}}}}} \right. \kern-0em} {{{c}^{2}}}}} }}} \\ = c\int\limits_{\lambda /{{c}^{2}}}^\infty {\frac{{dt}}{{{{{({{a}^{2}} + {{c}^{2}}t)}}^{2}}\sqrt {1 + t} }}} \\ = \frac{{2c}}{{{{{({{a}^{2}} - {{c}^{2}})}}^{2}}}}\int\limits_{\sqrt {1 + \lambda /{{c}^{2}}} }^\infty {\frac{{dy}}{{{{{\left( {1 + \frac{{{{c}^{2}}}}{{{{a}^{2}} - {{c}^{2}}}}{{y}^{2}}} \right)}}^{2}}}}} . \\ \end{gathered} $$
(A6)

Let’s introduce the following parameters for the compressed ellipsoid:

$$\alpha = {{{{c}^{2}}} \mathord{\left/ {\vphantom {{{{c}^{2}}} {({{a}^{2}} - {{c}^{2}})}}} \right. \kern-0em} {({{a}^{2}} - {{c}^{2}})}} > 0.$$
(A7)

And the integral I1:

$$\begin{gathered} {{I}_{1}}(\alpha ) = \int {\frac{{dy}}{{1 + \alpha {{y}^{2}}}}} = \frac{1}{{\sqrt \alpha }}\int {\frac{{d(\sqrt \alpha y)}}{{1 + {{{(\sqrt \alpha y)}}^{2}}}}} \\ = \frac{1}{{\sqrt \alpha }}\arctan (\sqrt \alpha y). \\ \end{gathered} $$
(A8)

Then

$$\begin{gathered} - \frac{{\partial {{I}_{1}}(\alpha )}}{{\partial \alpha }} = \int {\frac{{{{y}^{2}}dy}}{{{{{(1 + \alpha {{y}^{2}})}}^{2}}}}} = \frac{1}{\alpha }\int {\frac{{[ - 1 + (1 + {{y}^{2}})]dy}}{{{{{(1 + \alpha {{y}^{2}})}}^{2}}}}} \\ = - \frac{1}{\alpha }\int {\frac{{dy}}{{{{{(1 + \alpha {{y}^{2}})}}^{2}}}} + \frac{1}{\alpha }\int {\frac{{dy}}{{1 + \alpha {{y}^{2}}}}} } , \\ \end{gathered} $$
(A9)

or in the other words,

$$\begin{gathered} \int {\frac{{dy}}{{{{{(1 + \alpha {{y}^{2}})}}^{2}}}}} = {{I}_{1}} + \alpha \frac{{\partial {{I}_{1}}(\alpha )}}{{\partial \alpha }} = \frac{1}{{\sqrt \alpha }}\arctan (\sqrt \alpha y) \\ + \,\,\alpha \frac{\partial }{{\partial \alpha }}\left[ {\frac{1}{{\sqrt \alpha }}\arctan (\sqrt \alpha y)} \right] = \frac{1}{{\sqrt \alpha }}\arctan (\sqrt \alpha y) \\ - \,\,\frac{1}{{2\sqrt \alpha }}\arctan (\sqrt \alpha y) + \frac{\alpha }{{\sqrt \alpha }}\frac{1}{{1 + \alpha {{y}^{2}}}}\frac{y}{{2\sqrt \alpha }} \\ = \frac{1}{{2\sqrt \alpha }}\left[ {\arctan (\sqrt \alpha y) + \frac{{\sqrt \alpha y}}{{1 + \alpha {{y}^{2}}}}} \right] \\ \end{gathered} $$
(A10)

and thus,

$$\begin{gathered} {{I}_{{xy}}} = \frac{{2c}}{{{{{({{a}^{2}} - {{c}^{2}})}}^{2}}}}\int\limits_{\sqrt {1 + \lambda /{{c}^{2}}} }^\infty {\frac{{dy}}{{{{{\left( {1 + \alpha {{y}^{2}}} \right)}}^{2}}}}} \\ = \frac{1}{{{{{({{a}^{2}} - {{c}^{2}})}}^{{3/2}}}}}\left[ {\underbrace {\frac{\pi }{2} - \arctan \sqrt {\frac{{{{c}^{2}} + \lambda }}{{{{a}^{2}} - {{c}^{2}}}}} }_{\arccos \sqrt {({{c}^{2}} + \lambda )/({{a}^{2}} + \lambda )} } - \frac{{\sqrt {\frac{{{{c}^{2}} + \lambda }}{{{{a}^{2}} - {{c}^{2}}}}} }}{{1 + \frac{{{{c}^{2}} + \lambda }}{{{{a}^{2}} - {{c}^{2}}}}}}} \right] \\ \end{gathered} $$
(A11)

or

$${{I}_{{xy}}} = \frac{1}{{{{{({{a}^{2}} - {{c}^{2}})}}^{{3/2}}}}}\left[ {\arccos \sqrt {\frac{{{{c}^{2}} + \lambda }}{{{{a}^{2}} + \lambda }}} - \frac{{\sqrt {({{c}^{2}} + \lambda )({{a}^{2}} - {{c}^{2}})} }}{{{{a}^{2}} + \lambda }}} \right].$$
(A12)

For the integral Iz, we will repeat the similar steps:

$$\begin{gathered} {{I}_{z}} = \int\limits_\lambda ^\infty {\frac{{d\xi }}{{({{a}^{2}} + \xi ){{{({{c}^{2}} + \xi )}}^{{3/2}}}}}} = \frac{1}{c}\int\limits_\lambda ^\infty {\frac{{d({\xi \mathord{\left/ {\vphantom {\xi {{{c}^{2}}}}} \right. \kern-0em} {{{c}^{2}}}})}}{{({{a}^{2}} + {{c}^{2}}{\xi \mathord{\left/ {\vphantom {\xi {{{c}^{2}}}}} \right. \kern-0em} {{{c}^{2}}}}){{{(1 + {\xi \mathord{\left/ {\vphantom {\xi {{{c}^{2}}}}} \right. \kern-0em} {{{c}^{2}}}})}}^{{3/2}}}}}} {\text{ }} = \frac{1}{c}\int\limits_{\lambda /{{c}^{2}}}^\infty {\frac{{dt}}{{({{a}^{2}} + {{c}^{2}}t){{{(1 + t)}}^{{3/2}}}}}} \\ = \frac{2}{c}\int\limits_{\sqrt {1 + \lambda /{{c}^{2}}} }^\infty {\frac{{dy}}{{\left[ {{{a}^{2}} + {{c}^{2}}({{y}^{2}} - 1)} \right]{{y}^{2}}}}} = \frac{2}{c}\int\limits_{\sqrt {1 + \lambda /{{c}^{2}}} }^\infty {\left( {\frac{1}{{{{y}^{2}}}} - \frac{{{{c}^{2}}}}{{{{a}^{2}} - {{c}^{2}} + {{c}^{2}}{{y}^{2}}}}} \right)} \frac{{dy}}{{{{a}^{2}} - {{c}^{2}}}} \\ = \frac{2}{{c({{a}^{2}} - {{c}^{2}})}}\left[ {\left. {\frac{1}{y}} \right|_{\infty }^{{\sqrt {1 + \lambda /{{c}^{2}}} }} - \frac{{{{c}^{2}}}}{{{{a}^{2}} - {{c}^{2}}}}\int\limits_{\sqrt {1 + \lambda /{{c}^{2}}} }^\infty {\frac{{dy}}{{1 + \frac{{{{c}^{2}}}}{{{{a}^{2}} - {{c}^{2}}}}{{y}^{2}}}}} } \right] = \frac{2}{{c({{a}^{2}} - {{c}^{2}})}}\left[ {\frac{c}{{\sqrt {{{c}^{2}} + \lambda } }} - \frac{{{{c}^{2}}}}{{{{a}^{2}} - {{c}^{2}}}}\frac{{\sqrt {{{a}^{2}} - {{c}^{2}}} }}{c}\frac{{^{{^{{^{{^{{}}}}}}}}}}{{_{{_{{_{{_{{_{{}}}}}}}}}}}}} \right. \\ \times \,\,\left. {\int\limits_{\sqrt {({{c}^{2}} + \lambda )/({{a}^{2}} - {{c}^{2}})} }^\infty {\frac{{dz}}{{1 + {{z}^{2}}}}} } \right] = \frac{{2c}}{{c({{a}^{2}} - {{c}^{2}})}}\left[ {\frac{1}{{\sqrt {{{c}^{2}} + \lambda } }} - \frac{1}{{\sqrt {{{a}^{2}} - {{c}^{2}}} }}\left( {\underbrace {\frac{\pi }{2} - \arctan \sqrt {\frac{{{{c}^{2}} + \lambda }}{{{{a}^{2}} - {{c}^{2}}}}} }_{\arccos \sqrt {({{c}^{2}} + \lambda )/({{a}^{2}} + \lambda )} }} \right)} \right] \\ \end{gathered} $$
(A13)

finally,

$${{I}_{z}} = \frac{2}{{{{{({{a}^{2}} - {{c}^{2}})}}^{{3/2}}}}}\left( {\sqrt {\frac{{{{a}^{2}} - {{c}^{2}}}}{{{{c}^{2}} + \lambda }}} - \arccos \sqrt {\frac{{{{c}^{2}} + \lambda }}{{{{a}^{2}} + \lambda }}} } \right).$$
(A14)

APPENDIX B

1.1 INTEGRALS FOR THE “STRETCHED” ELLIPSOID

The integral I0 as show in in Appendix A (A3), is equal to:

$${{I}_{0}} = \frac{{2c}}{{{{a}^{2}} - {{c}^{2}}}}\int\limits_{\sqrt {1 + \lambda /{{c}^{2}}} }^\infty {\frac{{dy}}{{1 + \frac{{{{c}^{2}}}}{{{{a}^{2}} - {{c}^{2}}}}{{y}^{2}}}}} .$$
(B1)

For the stretched ellipsoid, c > a, so by introducing the parameter

$$\alpha = {{{{c}^{2}}} \mathord{\left/ {\vphantom {{{{c}^{2}}} {({{c}^{2}} - {{a}^{2}}) > 1}}} \right. \kern-0em} {({{c}^{2}} - {{a}^{2}}) > 1}}$$
(B2)

we have:

$$\begin{gathered} {{I}_{0}} = \frac{{2c}}{{{{a}^{2}} - {{c}^{2}}}}\int\limits_{\sqrt {1 + \lambda /{{c}^{2}}} }^\infty {\frac{{dy}}{{1 - {{{(\sqrt \alpha y)}}^{2}}}} = \frac{{2{{c}^{2}}}}{{c({{c}^{2}} - {{a}^{2}})}}} \int\limits_{\sqrt {1 + \lambda /{{c}^{2}}} }^\infty {\frac{{dy}}{{{{{(\sqrt \alpha y)}}^{2}} - 1}}} = \frac{{2\alpha }}{{c\sqrt \alpha }}\int\limits_{\sqrt {1 + \lambda /{{c}^{2}}} }^\infty {\frac{{d(\sqrt \alpha y)}}{2}} \left( {\frac{1}{{\sqrt \alpha y - 1}} - \frac{1}{{\sqrt \alpha y + 1}}} \right) \\ = \frac{1}{{\sqrt {{{c}^{2}} - {{a}^{2}}} }}\left. {\log \frac{{\sqrt \alpha y - 1}}{{\sqrt \alpha y + 1}}} \right|_{{\sqrt {1 + \lambda /{{c}^{2}}} }}^{\infty } = \frac{1}{{\sqrt {{{c}^{2}} - {{a}^{2}}} }}\log \frac{{c\sqrt {{{(1 + {\lambda \mathord{\left/ {\vphantom {\lambda {{{c}^{2}}}}} \right. \kern-0em} {{{c}^{2}}}})} \mathord{\left/ {\vphantom {{(1 + {\lambda \mathord{\left/ {\vphantom {\lambda {{{c}^{2}}}}} \right. \kern-0em} {{{c}^{2}}}})} {({{c}^{2}} - {{a}^{2}})}}} \right. \kern-0em} {({{c}^{2}} - {{a}^{2}})}}} + 1}}{{c\sqrt {{{(1 + {\lambda \mathord{\left/ {\vphantom {\lambda {{{c}^{2}}}}} \right. \kern-0em} {{{c}^{2}}}})} \mathord{\left/ {\vphantom {{(1 + {\lambda \mathord{\left/ {\vphantom {\lambda {{{c}^{2}}}}} \right. \kern-0em} {{{c}^{2}}}})} {({{c}^{2}} - {{a}^{2}})}}} \right. \kern-0em} {({{c}^{2}} - {{a}^{2}})}}} - 1}} \\ = \frac{1}{{\sqrt {{{c}^{2}} - {{a}^{2}}} }}\log \frac{{\sqrt {{{({{c}^{2}} + \lambda )} \mathord{\left/ {\vphantom {{({{c}^{2}} + \lambda )} {({{c}^{2}} - {{a}^{2}})}}} \right. \kern-0em} {({{c}^{2}} - {{a}^{2}})}}} + 1}}{{\sqrt {{{({{c}^{2}} + \lambda )} \mathord{\left/ {\vphantom {{({{c}^{2}} + \lambda )} {({{c}^{2}} - {{a}^{2}})}}} \right. \kern-0em} {({{c}^{2}} - {{a}^{2}})}}} - 1}} = \frac{1}{{\sqrt {{{c}^{2}} - {{a}^{2}}} }}\log \frac{{1 + \sqrt {{{({{c}^{2}} - {{a}^{2}})} \mathord{\left/ {\vphantom {{({{c}^{2}} - {{a}^{2}})} {({{c}^{2}} + \lambda )}}} \right. \kern-0em} {({{c}^{2}} + \lambda )}}} }}{{1 - \sqrt {{{({{c}^{2}} - {{a}^{2}})} \mathord{\left/ {\vphantom {{({{c}^{2}} - {{a}^{2}})} {({{c}^{2}} + \lambda )}}} \right. \kern-0em} {({{c}^{2}} + \lambda )}}} }}. \\ \end{gathered} $$
(B3)

Thus,

$${{I}_{0}} = \frac{1}{{\sqrt {{{c}^{2}} - {{a}^{2}}} }}\log \frac{{1 + \sqrt {{{({{c}^{2}} - {{a}^{2}})} \mathord{\left/ {\vphantom {{({{c}^{2}} - {{a}^{2}})} {({{c}^{2}} + \lambda )}}} \right. \kern-0em} {({{c}^{2}} + \lambda )}}} }}{{1 - \sqrt {{{({{c}^{2}} - {{a}^{2}})} \mathord{\left/ {\vphantom {{({{c}^{2}} - {{a}^{2}})} {({{c}^{2}} + \lambda )}}} \right. \kern-0em} {({{c}^{2}} + \lambda )}}} }}.$$
(B4)

Then, by using the expression (A5), we find

$${{I}_{{xy}}} = \int\limits_\lambda ^\infty {\frac{{d\xi }}{{{{{({{a}^{2}} + \xi )}}^{2}}\sqrt {{{c}^{2}} + \xi } }}} = \frac{{2c}}{{{{{({{a}^{2}} - {{c}^{2}})}}^{2}}}}\int\limits_{\sqrt {1 + \lambda /{{c}^{2}}} }^\infty {\frac{{dy}}{{{{{\left( {1 + \frac{{{{c}^{2}}}}{{{{a}^{2}} - {{c}^{2}}}}{{y}^{2}}} \right)}}^{2}}}}} $$
(B5)

and for the stretched ellipsoid:

$${{I}_{{xy}}} = \frac{{2c}}{{{{{({{c}^{2}} - {{a}^{2}})}}^{2}}}}\int\limits_{\sqrt {1 + \lambda /{{c}^{2}}} }^\infty {\frac{{dy}}{{{{{\left( {\frac{{{{c}^{2}}}}{{{{a}^{2}} - {{c}^{2}}}}{{y}^{2}} - 1} \right)}}^{2}}}}} = \frac{{2{{\alpha }^{2}}}}{{{{c}^{3}}\sqrt \alpha }}\int\limits_{\sqrt {1 + \lambda /{{c}^{2}}} }^\infty {\frac{{d(\sqrt \alpha y)}}{{{{{[{{{(\underbrace {\sqrt \alpha y}_x)}}^{2}} - 1]}}^{2}}}}} = \frac{2}{{{{{({{c}^{2}} - {{a}^{2}})}}^{{3/2}}}}}\int\limits_{\sqrt {({{c}^{2}} + \lambda )/({{c}^{2}} - {{a}^{2}})} }^\infty {\frac{{dx}}{{{{{({{x}^{2}} - 1)}}^{2}}}}} .$$
(B6)

To calculate this integral, let’s introduce the other integral:

$${{I}_{1}}(\beta ) = \int {\frac{{dx}}{{{{x}^{2}} - {{\beta }^{2}}}} = \frac{1}{{2\beta }}\log \frac{{x + \beta }}{{x - \beta }}} .$$
(B7)

Then

$$\begin{gathered} \int {\frac{{dx}}{{{{{({{x}^{2}} - {{\beta }^{2}})}}^{2}}}} = \frac{\partial }{{\partial {{\beta }^{2}}}}} \int {\frac{{dx}}{{{{x}^{2}} - {{\beta }^{2}}}}} = \frac{1}{{2\beta }}\frac{\partial }{{\partial \beta }}\left( {\frac{1}{{2\beta }}\log \frac{{x + \beta }}{{x - \beta }}} \right) \\ = - \frac{1}{{4{{\beta }^{2}}}}\log \frac{{x + \beta }}{{x - \beta }} + \frac{1}{{4{{\beta }^{2}}}}\frac{{x - \beta }}{{x + \beta }}\frac{{(x - \beta ) - (x + \beta )( - 1)}}{{{{{(x - \beta )}}^{2}}}} = \frac{1}{{4{{\beta }^{2}}}}\left( {\log \frac{{x - \beta }}{{x + \beta }} - \frac{{2x}}{{{{x}^{2}} - {{\beta }^{2}}}}} \right), \\ \end{gathered} $$
(B8)

thus,

$$\begin{gathered} {{I}_{{xy}}} = \frac{2}{{{{{({{c}^{2}} - {{a}^{2}})}}^{{3/2}}}}}\int\limits_{\sqrt {({{c}^{2}} + \lambda )/({{c}^{2}} - {{a}^{2}})} }^\infty {\frac{{dx}}{{{{{({{x}^{2}} - 1)}}^{2}}}}} = \frac{1}{{2{{{({{c}^{2}} - {{a}^{2}})}}^{{3/2}}}}}\left. {\left( {\log \frac{{x - 1}}{{x + 1}} - \frac{2}{{{{x}^{2}} - 1}}} \right)} \right|_{{\sqrt {({{c}^{2}} + \lambda )/({{c}^{2}} - {{a}^{2}})} }}^{\infty } \\ = \frac{1}{{{{{({{c}^{2}} - {{a}^{2}})}}^{{3/2}}}}}\left( {\frac{{\sqrt {{{({{c}^{2}} + \lambda )} \mathord{\left/ {\vphantom {{({{c}^{2}} + \lambda )} {({{c}^{2}} - {{a}^{2}})}}} \right. \kern-0em} {({{c}^{2}} - {{a}^{2}})}}} }}{{{{({{c}^{2}} + \lambda )} \mathord{\left/ {\vphantom {{({{c}^{2}} + \lambda )} {({{c}^{2}} - {{a}^{2}})}}} \right. \kern-0em} {({{c}^{2}} - {{a}^{2}})}} - 1}}} \right.\left. { + \,\,\frac{1}{2}\log \frac{{\sqrt {{{({{c}^{2}} + \lambda )} \mathord{\left/ {\vphantom {{({{c}^{2}} + \lambda )} {({{c}^{2}} - {{a}^{2}})}}} \right. \kern-0em} {({{c}^{2}} - {{a}^{2}})}}} - 1}}{{\sqrt {{{({{c}^{2}} + \lambda )} \mathord{\left/ {\vphantom {{({{c}^{2}} + \lambda )} {({{c}^{2}} - {{a}^{2}})}}} \right. \kern-0em} {({{c}^{2}} - {{a}^{2}})}}} + 1}}} \right) \\ \end{gathered} $$
(B9)

or

$${{I}_{{xy}}} = \frac{1}{{{{{({{c}^{2}} - {{a}^{2}})}}^{{3/2}}}}}\left( {\frac{{\sqrt {({{c}^{2}} + \lambda )({{c}^{2}} - {{a}^{2}})} }}{{{{a}^{2}} + \lambda }}} \right.\left. { - \,\,\frac{1}{2}\log \frac{{1 + \sqrt {{{({{c}^{2}} - {{a}^{2}})} \mathord{\left/ {\vphantom {{({{c}^{2}} - {{a}^{2}})} {({{c}^{2}} + \lambda )}}} \right. \kern-0em} {({{c}^{2}} + \lambda )}}} }}{{1 - \sqrt {{{({{c}^{2}} - {{a}^{2}})} \mathord{\left/ {\vphantom {{({{c}^{2}} - {{a}^{2}})} {({{c}^{2}} + \lambda )}}} \right. \kern-0em} {({{c}^{2}} + \lambda )}}} }}} \right).$$
(B10)

Finally, using the intermediate result from the Appendix A, when calculated the integral Iz, we have:

$$\begin{gathered} {{I}_{z}} = \int\limits_\lambda ^\infty {\frac{{d\xi }}{{({{a}^{2}} + \xi ){{{({{c}^{2}} + \xi )}}^{{3/2}}}}}} = \frac{2}{{c({{a}^{2}} - {{c}^{2}})}}\left[ {\left. {\frac{1}{y}} \right|_{\infty }^{{\sqrt {1 + \lambda /{{c}^{2}}} }} - \frac{{{{c}^{2}}}}{{{{a}^{2}} - {{c}^{2}}}}\int\limits_{\sqrt {1 + \lambda /{{c}^{2}}} }^\infty {\frac{{dy}}{{1 + \frac{{{{c}^{2}}}}{{{{a}^{2}} - {{c}^{2}}}}{{y}^{2}}}}} } \right] = \frac{2}{{({{a}^{2}} - {{c}^{2}})}} \\ \times \,\left[ {\frac{1}{{\sqrt {{{c}^{2}} + \lambda } }} - \frac{c}{{{{c}^{2}} - {{a}^{2}}}}\int\limits_{\sqrt {1 + \lambda /{{c}^{2}}} }^\infty {\frac{{dy}}{{1 - \frac{{{{c}^{2}}}}{{{{c}^{2}} - {{a}^{2}}}}{{y}^{2}}}}} } \right] = \frac{2}{{({{a}^{2}} - {{c}^{2}})}}\left[ {\frac{1}{{\sqrt {{{c}^{2}} + \lambda } }} + \frac{1}{{\sqrt {{{c}^{2}} - {{a}^{2}}} }}\frac{{^{{^{{}}}}}}{{_{{_{{_{{_{{_{{}}}}}}}}}}}}} \right. \\ \times \,\,\left. {\int\limits_{\sqrt {1 + \lambda /{{c}^{2}}} }^\infty {\frac{{d{{(c} \mathord{\left/ {\vphantom {{(c} {\sqrt {{{c}^{2}} - {{a}^{2}}} }}} \right. \kern-0em} {\sqrt {{{c}^{2}} - {{a}^{2}}} }}y)}}{{{{{({c \mathord{\left/ {\vphantom {c {\sqrt {{{c}^{2}} - {{a}^{2}}} }}} \right. \kern-0em} {\sqrt {{{c}^{2}} - {{a}^{2}}} }}y)}}^{2}} - 1}}} } \right] = (\alpha = \frac{{{{c}^{2}}}}{{{{c}^{2}} - {{a}^{2}}}}) = - \frac{2}{{{{{({{c}^{2}} - {{a}^{2}})}}^{{3/2}}}}}\left[ {\sqrt {\frac{{{{c}^{2}} - {{a}^{2}}}}{{{{c}^{2}} + \lambda }}} + \int\limits_{\sqrt {1 + \lambda /{{c}^{2}}} }^\infty {\frac{{d(\sqrt \alpha y)}}{{{{{(\sqrt \alpha y)}}^{2}} - 1}}} } \right] \\ = - \frac{2}{{{{{({{c}^{2}} - {{a}^{2}})}}^{{3/2}}}}}\left[ {\sqrt {\frac{{{{c}^{2}} - {{a}^{2}}}}{{{{c}^{2}} + \lambda }}} \frac{{^{{^{{^{{^{{}}}}}}}}}}{{_{{_{{}}}}}}} \right.\left. { + \,\,\int\limits_{\sqrt {1 + \lambda /{{c}^{2}}} }^\infty {\frac{{d(\sqrt \alpha y)}}{2}\left( {\frac{1}{{\sqrt \alpha y - 1}} - \frac{1}{{\sqrt \alpha y + 1}}} \right)} } \right] = - \frac{2}{{{{{({{c}^{2}} - {{a}^{2}})}}^{{3/2}}}}} \\ \times \,\,\left[ {\sqrt {\frac{{{{c}^{2}} - {{a}^{2}}}}{{{{c}^{2}} + \lambda }}} + \frac{1}{2}\left. {\log \frac{{\sqrt \alpha y - 1}}{{\sqrt \alpha y + 1}}} \right|_{{\sqrt {1 + \lambda /{{c}^{2}}} }}^{\infty }} \right] = \frac{2}{{{{{({{c}^{2}} - {{a}^{2}})}}^{{3/2}}}}}\left[ { - \sqrt {\frac{{{{c}^{2}} - {{a}^{2}}}}{{{{c}^{2}} + \lambda }}} + \frac{1}{2}\log \frac{{\sqrt {c{{(1 + {\lambda \mathord{\left/ {\vphantom {\lambda {{{c}^{2}}}}} \right. \kern-0em} {{{c}^{2}}}})} \mathord{\left/ {\vphantom {{(1 + {\lambda \mathord{\left/ {\vphantom {\lambda {{{c}^{2}}}}} \right. \kern-0em} {{{c}^{2}}}})} {({{c}^{2}} - {{a}^{2}})}}} \right. \kern-0em} {({{c}^{2}} - {{a}^{2}})}}} + 1}}{{\sqrt {cc{{(1 + {\lambda \mathord{\left/ {\vphantom {\lambda {{{c}^{2}}}}} \right. \kern-0em} {{{c}^{2}}}})} \mathord{\left/ {\vphantom {{(1 + {\lambda \mathord{\left/ {\vphantom {\lambda {{{c}^{2}}}}} \right. \kern-0em} {{{c}^{2}}}})} {({{c}^{2}} - {{a}^{2}})}}} \right. \kern-0em} {({{c}^{2}} - {{a}^{2}})}}} - 1}}} \right] \\ \end{gathered} $$
(B11)

or

$${{I}_{z}} = \frac{2}{{{{{({{c}^{2}} - {{a}^{2}})}}^{{3/2}}}}}\left[ {\frac{1}{2}\log \frac{{1 + \sqrt {{{({{c}^{2}} - {{a}^{2}})} \mathord{\left/ {\vphantom {{({{c}^{2}} - {{a}^{2}})} {({{c}^{2}} + \lambda )}}} \right. \kern-0em} {({{c}^{2}} + \lambda )}}} }}{{1 - \sqrt {{{({{c}^{2}} - {{a}^{2}})} \mathord{\left/ {\vphantom {{({{c}^{2}} - {{a}^{2}})} {({{c}^{2}} + \lambda )}}} \right. \kern-0em} {({{c}^{2}} + \lambda )}}} }} - \sqrt {\frac{{{{c}^{2}} - {{a}^{2}}}}{{{{c}^{2}} + \lambda }}} } \right].$$
(B12)

APPENDIX C

1.1 TRANSITION FROM A COMPRESSED ELLIPSOID TO SPHERE

Let’s calculate the free term K1 in the expression (48) for the potential outside the compressed ellipsoid in transition from ellipsoid to sphere and the coefficients K2 and K3 in the same equation. Assuming

$$c = a - \delta \,\,\,\,{\text{and}}\,\,\,\,\bar {\delta } = {\delta \mathord{\left/ {\vphantom {\delta {2a}}} \right. \kern-0em} {2a}} \ll 1$$
(C1)

we can calculate K1 as

$$\begin{gathered} {{K}_{1}} = \frac{{2\arccos \sqrt {\frac{{{{{(a - \delta )}}^{2}} + \lambda }}{{{{a}^{2}} + \lambda }}} }}{{\sqrt {{{a}^{2}} - {{{(a - \delta )}}^{2}}} }} = \frac{{2\arccos \sqrt {\frac{{{{a}^{2}} + \lambda - 2a\delta (1 - \bar {\delta })}}{{{{a}^{2}} + \lambda }}} }}{{\sqrt {2a\delta (1 - \bar {\delta })} }} \\ = \frac{{2{{{(1 - \bar {\delta })}}^{{ - 1/2}}}}}{{\sqrt {2a\delta } }}\arccos {{\left( {1 - 2a\delta \frac{{1 - \bar {\delta }}}{{{{a}^{2}} + \lambda }}} \right)}^{{1/2}}} \approx ({\text{Zero's order over }}\bar {\delta }{\text{)}} \approx \frac{2}{{\sqrt {2a\delta } }}\arccos \left( {1 - \frac{{a\delta }}{{{{a}^{2}} + \lambda }}} \right). \\ \end{gathered} $$
(C2)

However, for small α \( \ll \) 1, arccos(1 – α) = t, and 1 – α = cost ≈ 1 – t2/2, then

$$\begin{gathered} {{K}_{1}} \approx \frac{2}{{\sqrt {2a\delta } }}\arccos \left( {1 - \frac{{a\delta }}{{{{a}^{2}} + \lambda }}} \right) \\ \approx \frac{2}{{\sqrt {2a\delta } }}\sqrt {\frac{{2a\delta }}{{{{a}^{2}} + \lambda }}} = \frac{2}{{\sqrt {{{a}^{2}} + \lambda } }}. \\ \end{gathered} $$
(C3)

Then, by using the substitutions and the relations, obtained during the calculation of K1, we calculate K2:

$$\begin{gathered} {{K}_{2}} = \frac{{\arccos \sqrt {\frac{{{{{(a - \delta )}}^{2}} + \lambda }}{{{{a}^{2}} + \lambda }}} - \frac{{\sqrt {[{{a}^{2}} - {{{(a - \delta )}}^{2}}][{{{(a - \delta )}}^{2}} + \lambda ]} }}{{{{a}^{2}} + \lambda }}}}{{{{{[{{a}^{2}} - {{{(a - \delta )}}^{2}}]}}^{{3/2}}}}} = \frac{1}{{{{{(2a\delta )}}^{{3/2}}}{{{(1 - \bar {\delta })}}^{{3/2}}}}} \\ \times \,\,\left[ {\arccos {{{\left( {1 - 2a\delta \frac{{1 - \bar {\delta }}}{{{{a}^{2}} + \lambda }}} \right)}}^{{1/2}}} - \frac{{\sqrt {2a\delta (1 - \bar {\delta })[{{a}^{2}} + \lambda - 2a\delta (1 - \bar {\delta })]} }}{{{{a}^{2}} + \lambda }}} \right] \\ \approx \frac{{{{{(1 - \bar {\delta })}}^{{ - 3/2}}}}}{{{{{(2a\delta )}}^{{3/2}}}}}\left\{ {\arccos \left[ {1\underbrace { - a\delta \frac{{1 - \bar {\delta }}}{{{{a}^{2}} + \lambda }} - \frac{{{{a}^{2}}{{\delta }^{2}}{{{(1 - \bar {\delta })}}^{2}}}}{{2{{{({{a}^{2}} + \lambda )}}^{2}}}}}_{ = - \alpha }} \right]\sqrt {\frac{{2a\delta }}{{{{a}^{2}} + \lambda }}} {{{(1 - \bar {\delta })}}^{{1/2}}}{{{\left( {1 - 2a\delta \frac{{1 - \bar {\delta }}}{{{{a}^{2}} + \lambda }}} \right)}}^{{1/2}}}} \right\}. \\ \end{gathered} $$
(C4)

For small α \( \ll \) 1, arccos(1 – α) = t, but now we will keep the quadratic terms, so that 1 – α = cost ≈ 1 – t2/2 + t4/24, and

$$\begin{gathered} {{K}_{2}} \approx \frac{{{{{(1 - \bar {\delta })}}^{{ - 3/2}}}}}{{{{{(2a\delta )}}^{{3/2}}}}}\left\{ {\sqrt {2a\delta \frac{{1 - \bar {\delta }}}{{{{a}^{2}} + \lambda }} + \frac{{{{a}^{2}}{{\delta }^{2}}{{{(1 - \bar {\delta })}}^{2}}}}{{{{{({{a}^{2}} + \lambda )}}^{2}}}}} } \right.\left[ {1 + \frac{1}{{12}}\left( {a\delta \frac{{1 - \bar {\delta }}}{{{{a}^{2}} + \lambda }} + \frac{{{{a}^{2}}{{\delta }^{2}}{{{(1 - \bar {\delta })}}^{2}}}}{{2{{{({{a}^{2}} + \lambda )}}^{2}}}}} \right)} \right] \\ - \,\,\left. {\sqrt {\frac{{2a\delta }}{{{{a}^{2}} + \lambda }}} {{{(1 - \bar {\delta })}}^{{1/2}}}{{{\left( {1 - 2a\delta \frac{{1 - \bar {\delta }}}{{{{a}^{2}} + \lambda }}} \right)}}^{{1/2}}}} \right\} \\ \approx \frac{{{{{(1 - \bar {\delta })}}^{{ - 3/2}}}}}{{{{{(2a\delta )}}^{{3/2}}}}}\sqrt {\frac{{2a\delta }}{{{{a}^{2}} + \lambda }}} {{(1 - \bar {\delta })}^{{1/2}}}\left\{ {{{{\left[ {1 + \frac{{a\delta (1 - \bar {\delta })}}{{2({{a}^{2}} + \lambda )}}} \right]}}^{{1/2}}}\left( {1 + \frac{{a\delta }}{{12}}\frac{{1 - \bar {\delta }}}{{{{a}^{2}} + \lambda }}} \right) - {{{\left( {1 - 2a\delta \frac{{1 - \bar {\delta }}}{{{{a}^{2}} + \lambda }}} \right)}}^{{1/2}}}} \right\} \\ \approx \frac{{1 - \bar {\delta }}}{{2a\delta \sqrt {{{a}^{2}} + \lambda } }}\left( {1 + \frac{{a\delta }}{4}\frac{{1 - \bar {\delta }}}{{{{a}^{2}} + \lambda }} + \frac{{a\delta }}{{12}}\frac{{1 - \bar {\delta }}}{{{{a}^{2}} + \lambda }} - 1} \right.\left. { + \,\,a\delta \frac{{1 - \bar {\delta }}}{{{{a}^{2}} + \lambda }}} \right) \approx \frac{{1 - \bar {\delta }}}{{2a\delta \sqrt {{{a}^{2}} + \lambda } }}\frac{4}{3}a\delta \frac{{1 - \bar {\delta }}}{{{{a}^{2}} + \lambda }}, \\ \end{gathered} $$
(C5)

or

$${{K}_{2}} \approx \frac{{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0em} 3}}}{{{{{({{a}^{2}} + \lambda )}}^{{3/2}}}}},$$
(C6)

finally, by using all these results and methods:

$$\begin{gathered} {{K}_{3}} = \frac{1}{{{{{[{{a}^{2}} - c{{{(a - \delta )}}^{2}}]}}^{{3/2}}}}}\left( {\arccos \sqrt {\frac{{{{{(a - \delta )}}^{2}} + \lambda }}{{{{a}^{2}} + \lambda }}} - \sqrt {\frac{{{{a}^{2}} - {{{(a - \delta )}}^{2}}}}{{{{{(a - \delta )}}^{2}} + \lambda }}} } \right) = \frac{{{{{(1 - \bar {\delta })}}^{{ - 3/2}}}}}{{{{{(2a\delta )}}^{{3/2}}}}} \\ \times \,\,\left[ {\arccos {{{\left( {1 - 2a\delta \frac{{1 - \bar {\delta }}}{{{{a}^{2}} + \lambda }}} \right)}}^{{1/2}}} - \frac{{\sqrt {2a\delta (1 - \bar {\delta })} }}{{{{a}^{2}} + \lambda - 2a\delta (1 - \bar {\delta })}}} \right] \approx \frac{{{{{(1 - \bar {\delta })}}^{{ - 3/2}}}}}{{{{{(2a\delta )}}^{{3/2}}}}} \\ \times \,\,\left\{ {\sqrt {2a\delta \frac{{1 - \bar {\delta }}}{{{{a}^{2}} + \lambda }} + \frac{{{{a}^{2}}{{\delta }^{2}}{{{(1 - \bar {\delta })}}^{2}}}}{{{{{({{a}^{2}} + \lambda )}}^{2}}}}} \left[ {1 + \frac{1}{{12}}\left( {a\delta \frac{{1 - \bar {\delta }}}{{{{a}^{2}} + \lambda }} + \frac{{{{a}^{2}}{{\delta }^{2}}{{{(1 - \bar {\delta })}}^{2}}}}{{2{{{({{a}^{2}} + \lambda )}}^{2}}}}} \right)} \right]} \right. - \sqrt {\frac{{2a\delta }}{{{{a}^{2}} + \lambda }}} \left. { - \,\,{{{(1 - \bar {\delta })}}^{{1/2}}}{{{\left( {1 - 2a\delta \frac{{1 - \bar {\delta }}}{{{{a}^{2}} + \lambda }}} \right)}}^{{ - 1/2}}}} \right\} \\ \approx \frac{{{{{(1 - \bar {\delta })}}^{{ - 3/2}}}}}{{{{{(2a\delta )}}^{{3/2}}}}}\sqrt {\frac{{2a\delta (1 - \bar {\delta })}}{{{{a}^{2}} + \lambda }}} \left[ {{{{\left( {1 + \frac{{a\delta (1 - \bar {\delta })}}{{2({{a}^{2}} + \lambda )}}} \right)}}^{{1/2}}}\left( {1 + \frac{{a\delta }}{{12}}\frac{{1 - \bar {\delta }}}{{{{a}^{2}} + \lambda }}} \right) - \left( {1 + a\delta \frac{{1 - \bar {\delta }}}{{{{a}^{2}} + \lambda }}} \right)} \right] \approx \frac{{1 - \bar {\delta }}}{{2a\delta \sqrt {{{a}^{2}} + \lambda } }} \\ \times \,\,\left[ {1 + \frac{{a\delta }}{4}\frac{{1 - \bar {\delta }}}{{{{a}^{2}} + \lambda }} + \frac{{a\delta }}{{12}}\frac{{1 - \bar {\delta }}}{{{{a}^{2}} + \lambda }} - 1 - a\delta \frac{{1 - \bar {\delta }}}{{{{a}^{2}} + \lambda }}} \right] = \frac{{1 - \bar {\delta }}}{{2a\delta \sqrt {{{a}^{2}} + \lambda } }}\left( { - \frac{2}{3}a\delta \frac{{1 - \bar {\delta }}}{{{{a}^{2}} + \lambda }}} \right) \approx \frac{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} 3}} \right. \kern-0em} 3}}}{{{{{({{a}^{2}} + \lambda )}}^{{3/2}}}}}. \\ \end{gathered} $$
(C7)

Or

$${{K}_{3}} = \frac{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} 3}} \right. \kern-0em} 3}}}{{{{{({{a}^{2}} + \lambda )}}^{{3/2}}}}}.$$
(C8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eidelman, Y., Kutsaev, S.V. & Bruhwiler, D. Ellipsoid Space Charge Model for Electron Beam Dynamics Simulations. Phys. Part. Nuclei 52, 477–496 (2021). https://doi.org/10.1134/S1063779621030047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779621030047

Keywords:

Navigation