Skip to main content
Log in

On 10D SYM Superamplitudes

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Recently the spinor helicity and (two types of) superamplitude formalisms for 11D supergravity and 10D supersymmetric Yang–Mills theories were proposed in [13]. In this contribution we describe briefly the basic properties of these superamplitudes for the simpler case of 10D SYM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Hence also the name of Lorentz harmonics [16, 12, 13].

  2. This is the Lorentz rotation from a special coordinate system in which \({{k}_{{(a)i}}} = \rho _{i}^{\# }(1,0,...,0, - 1)\) to an arbitrary coordinate system under consideration.

  3. This helicity spinor–Lorentz harmonic correspondence was also noticed in [18] in a context of five dimensional field theories.

REFERENCES

  1. I. Bandos, “BCFW-type recurrent relations for tree amplitudes of D = 11 supergravity”, Phys. Rev. Lett. 118, 031601 (2017); arXiv:1605.00036[hep-th].

  2. I. Bandos, “Spinor frame formalism for amplitudes and constrained superamplitudes of 10D SYM and 11D supergravity”; arXiv:1711.00914.

  3. I. Bandos, “An analytic superfield formalism for tree superamplitudes in D = 10 and D = 1 // arXiv:1705.09550[hep-th].

  4. Z. Bern, J. J. Carrasco, L. J. Dixon, H. Johansson, and R. Roiban, “Amplitudes and ultraviolet behavior of N = 8 supergravity”, Fortschr. Phys. 59, 561 (2011); arXiv:1103.1848[hep-th].

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Benincasa, “New structures in scattering amplitudes: A review”, Int. J. Mod. Phys. A 29, 1430005 (2014); arXiv:1312.5583[hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. H. Elvang and Y.-t. Huang, Scattering Amplitudes in Gauge Theory and Gravity (CUP, Cambridge, 2015).

    Book  MATH  Google Scholar 

  7. N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, A. B. Goncharov, A. Postnikov, and J. Trnka, Grassmannian Geometry of Scattering Amplitudes (CUP, Cambridge, 2015).

    MATH  Google Scholar 

  8. R. Britto, F. Cachazo, B. Feng, and E. Witten, “Direct proof of tree-level recursion relation in Yang-Mills theory”, Phys. Rev. Lett. 94, 181602 (2005); [hep-th/0501052].

    Article  ADS  MathSciNet  Google Scholar 

  9. N. Arkani-Hamed, F. Cachazo, and J. Kaplan, “What is the simplest Quantum Field Theory?”, JHEP 1009, 016 (2010).

  10. A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky, and E. S. Sokatchev, Harmonic Superspace (Cambridge Univ. Pr., Cambridge, UK, 2001).

  11. I. A. Bandos and A. Y. Nurmagambetov, “Generalized action principle and extrinsic geometry for N = 1 superparticle”, Classical Quantum Gravity 14, 1597 (1997); [hep-th/9610098].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. A. S. Galperin, P. S. Howe, and K. S. Stelle, “The superparticle and the Lorentz group”, Nucl. Phys. B 368, 248 (1992); [hep-th/9201020].

    Article  ADS  MathSciNet  Google Scholar 

  13. F. Delduc, A. Galperin, and E. Sokatchev, “Lorentz harmonic (super)fields and (super)particles”, Nucl. Phys. B 368, 143 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  14. E. Sokatchev, “Light cone harmonic superspace and its applications”, Phys. Lett. B 169, 209 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  15. E. Sokatchev, “Harmonic superparticle”, Classical Quantum Gravity 4, 237 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  16. I. A. Bandos, “Superparticle in Lorentz harmonic superspace”, Sov. J. Nucl. Phys. 51, 906–914 (1990).

    MathSciNet  Google Scholar 

  17. S. Caron-Huot and D. O’Connell, “Spinor helicity and dual conformal symmetry in ten dimensions”, JHEP 1108, 014 (2011); arXiv:1010.5487.

  18. D. V. Uvarov, “Spinor description of D = 5 massless low-spin gauge fields”, Classical Quantum Gravity, 33, 135010 (2016); arXiv:1506.01881[hep-th].

Download references

ACKNOWLEDGMENTS

This work has been supported in part by the Spanish Ministry of Economy, Industry and Competitiveness (MINECO) grants FPA 2015-66793-P, which is partially financed with FEDER/ERDF fund of EU, by the Basque Government Grant IT-979-16, and the Basque Country University program UFI 11/55. The author is grateful to Theoretical Department of CERN (Geneva, Switzerland), to the Galileo Galilei Institute for Theoretical Physics and the INFN (Florence, Italy), as well as to the the organizers of the GGI workshop ”Supergravity: what next?”, and especially to Antoine Van Proeyen, for the hospitality and partial support of his visits at certain stages of this work. Many thanks to the organizers of SQS 2017 conference, and especially to Zhenya Ivanov and Sergei Fedoruk, for their kind hospitality in Dubna.

Author information

Authors and Affiliations

Authors

Additional information

1The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandos, I. On 10D SYM Superamplitudes. Phys. Part. Nuclei 49, 829–834 (2018). https://doi.org/10.1134/S1063779618050040

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779618050040

Keywords

Navigation