Skip to main content
Log in

Hidden Supersymmetry as a Key to Constructing Low-Energy Superfield Effective Actions

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

In this review paper, we outline and exemplify the general method of constructing the superfield low-energy quantum effective action of supersymmetric Yang-Mills (SYM) theories with extended supersymmetry in the Coulomb phase, grounded upon the requirement of invariance under the non-manifest (hidden) part of the underlying supersymmetry. In this way we restore the N = 4 supersymmetric effective actions in 4D, N = 4 SYM, N = 2 supersymmetric effective actions in 5D, N = 2 SYM and N = (1, 1) supersymmetric effective actions in 6D, N = (1, 1) SYM theories. The manifest off-shell fractions of the full supersymmetry are, respectively, 4D, N = 2, 5D, N = 1 and 6D, N = (1, 0) supersymmetries. In all cases the effective actions depend on the corresponding covariant superfield SYM strengths and the hypermultiplet superfields. The whole construction essentially exploits a power of the harmonic superspace formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. T. Banin, I. L. Buchbinder, and N. G. Pletnev, “One-loop effective action for N = 4 SYM theory in the hypermultiplet sector: Leading low-energy approximation and beyond,” Phys. Rev. D 68 (6), 065024 (2003); arXiv: hep-th/0304046.

    Google Scholar 

  2. D. V. Belyaev and I. B. Samsonov, “Wess-Zumino term in the N = 4 SYM effective action revisited,” J. High Energy Phys. 2011 (04), 112 (2011); arXiv: 1103.5070 [hep-th].

    MathSciNet  MATH  Google Scholar 

  3. D. V. Belyaev and I. B. Samsonov, “Bi-harmonic superspace for N = 4 d = 4 super Yang-Mills,” J. High Energy Phys. 2011 (09), 056 (2011); arXiv: 1106.0611 [hep-th].

    MathSciNet  MATH  Google Scholar 

  4. E. A. Bergshoeff, M. de Roo, A. Bilal, and A. Sevrin, “Supersymmetric non-abelian Born-Infeld revisited,” J. High Energy Phys. 2001 (07), 029 (2001); arXiv: hep-th/0105274.

    MathSciNet  Google Scholar 

  5. R. Blumenhagen, B. Körs, D. Lüst, and S. Stieberger, “Four-dimensional string compactifications with D-branes, orientifolds and fluxes,” Phys. Rep. 445 (1-6), 1–193 (2007); arXiv: hep-th/0610327.

    Google Scholar 

  6. L. V. Bork, D. I. Kazakov, M. V. Kompaniets, D. M. Tolkachev, and D. E. Vlasenko, “Divergences in maximal supersymmetric Yang-Mills theories in diverse dimensions,” J. High Energy Phys. 2015 (11), 059 (2015); arXiv: 1508.05570 [hep-th].

    MathSciNet  MATH  Google Scholar 

  7. G. Bossard, P. S. Howe, and K. S. Stelle, “The ultra-violet question in maximally supersymmetric field theories,” Gen. Relativ. Gravitation 41 (4), 919–981 (2009); arXiv: 0901.4661 [hep-th].

    MathSciNet  MATH  Google Scholar 

  8. G. Bossard, P. S. Howe, and K. S. Stelle, “A note on the UV behaviour of maximally supersymmetric Yang-Mills theories,” Phys. Lett. B 682 (1), 137–142 (2009); arXiv: 0908.3883 [hep-th].

    MathSciNet  Google Scholar 

  9. G. Bossard, E. Ivanov, and A. Smilga, “Ultraviolet behavior of 6D supersymmetric Yang-Mills theories and harmonic superspace,” J. High Energy Phys. 2015 (12), 085 (2015); arXiv: 1509.08027 [hep-th].

    MathSciNet  MATH  Google Scholar 

  10. E. I. Buchbinder, I. L. Buchbinder, E. A. Ivanov, S. M. Kuzenko, and B. A. Ovrut, “Low-energy effective action in N = 2 supersymmetric field theories,” Phys. Part. Nucl. 32 (5), 641–674 (2001) [transl. from Fiz. Elem. Chastits At. Yadra 32 (5), 1222–1290 (2001)].

    Google Scholar 

  11. E. I. Buchbinder, I. L. Buchbinder, and S. M. Kuzenko, “Non-holomorphic effective potential in N = 4 SU(n) SYM,” Phys. Lett. B 446 (3-4), 216–223 (1999); arXiv: hep-th/9810239.

    Google Scholar 

  12. I. L. Buchbinder, E. I. Buchbinder, S. M. Kuzenko, and B. A. Ovrut, “The background field method for N = 2 super Yang-Mills theories in harmonic superspace,” Phys. Lett. B 417 (1-2), 61–71 (1998); arXiv: hep-th/9704214.

    MathSciNet  Google Scholar 

  13. I. L. Buchbinder and E. A. Ivanov, “Complete N = 4 structure of low-energy effective action in N = 4 super-Yang-Mills theories,” Phys. Lett. B 524 (1-2), 208–216 (2002); arXiv: hep-th/0111062.

    MathSciNet  MATH  Google Scholar 

  14. I. L. Buchbinder, E. A. Ivanov, O. Lechtenfeld, N. G. Pletnev, I. B. Samsonov, and B. M. Zupnik, “ABJM models in N = 3 harmonic superspace,” J. High Energy Phys. 2009 (03), 096 (2009); arXiv: 0811.4774 [hep-th].

    MathSciNet  Google Scholar 

  15. I. L. Buchbinder, E. A. Ivanov, and B. S. Merzlikin, “Leading low-energy effective action in 6D, N = (1, 1) SYM theory,” J. High Energy Phys. 2018 (09), 039 (2018); arXiv: 1711.03302 [hep-th].

    MathSciNet  MATH  Google Scholar 

  16. I. L. Buchbinder, E. A. Ivanov, B. S. Merzlikin, and K. V. Stepanyantz, “One-loop divergences in the 6D, N = (1, 0) abelian gauge theory,” Phys. Lett. B 763, 375–381 (2016); arXiv: 1609.00975 [hep-th].

    MATH  Google Scholar 

  17. I. L. Buchbinder, E. A. Ivanov, B. S. Merzlikin, and K. V. Stepanyantz, “One-loop divergences in 6D, N = (1, 0) SYM theory,” J. High Energy Phys. 2017 (01), 128 (2017); arXiv: 1612.03190 [hep-th].

    MathSciNet  MATH  Google Scholar 

  18. I. L. Buchbinder, E. A. Ivanov, B. S. Merzlikin, and K. V. Stepanyantz, “Supergraph analysis of the one-loop divergences in 6D, N = (1, 0) and N = (1, 1) gauge theories,” Nucl. Phys. B 921, 127–158 (2017); arXiv: 1704.02530 [hep-th].

    MathSciNet  MATH  Google Scholar 

  19. I. L. Buchbinder, E. A. Ivanov, B. S. Merzlikin, and K. V. Stepanyantz, “On the two-loop divergences of the 2-point hypermultiplet supergraphs for 6D, N = (1, 1) SYM theory,” Phys. Lett. B 778, 252–255 (2018); arXiv: 1711.11514 [hep-th].

    MATH  Google Scholar 

  20. I. Buchbinder, E. Ivanov, B. Merzlikin, and K. Stepanyantz, “Harmonic superspace approach to the effective action in six-dimensional supersymmetric gauge theories,” Symmetry 11 (1), 68 (2019); arXiv: 1812.02681 [hep-th].

    MATH  Google Scholar 

  21. I. L. Buchbinder, E. A. Ivanov, and A. Yu. Petrov, “Complete low-energy effective action in N = 4 SYM: A direct N = 2 supergraph calculation,” Nucl. Phys. B 653 (1-2), 64–84 (2003); arXiv: hep-th/0210241.

    MathSciNet  MATH  Google Scholar 

  22. I. L. Buchbinder, E. A. Ivanov, and N. G. Pletnev, “Superfield approach to the construction of effective action in quantum field theory with extended supersymmetry,” Phys. Part. Nucl. 47 (3), 291–369 (2016) [transl. from Fiz. Elem. Chastits At. Yadra 47 (3), 541–698 (2016)].

    Google Scholar 

  23. I. L. Buchbinder, E. A. Ivanov, and I. B. Samsonov, “The low-energy N = 4 SYM effective action in diverse harmonic superspaces,” Phys. Part. Nucl. 48 (3), 333–388 (2017); arXiv: 1603.02768 [hep-th].

    Google Scholar 

  24. I. L. Buchbinder, E. A. Ivanov, and I. B. Samsonov, “Low-energy effective action in 5D, N = 2 supersymmetric gauge theory,” Nucl. Phys. B 940, 54–62 (2019); arXiv: 1812.07206 [hep-th].

    MATH  Google Scholar 

  25. I. L. Buchbinder, E. A. Ivanov, I. B. Samsonov, and B. M. Zupnik, “Superconformal N = 3 SYM low-energy effective action,” J. High Energy Phys. 2012 (01), 001 (2012); arXiv: 1111.4145 [hep-th].

    MathSciNet  MATH  Google Scholar 

  26. I. L. Buchbinder and S. M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity, or a Walk through Superspace (Inst. Phys., Bristol, 1995); 2nd ed. (1998).

    MATH  Google Scholar 

  27. I. L. Buchbinder and S. M. Kuzenko, “Comments on the background field method in harmonic superspace: Nonholomorphic corrections in N = 4 SYM,” Mod. Phys. Lett. A 13 (20), 1623–1635 (1998); arXiv: hep-th/9804168.

    Google Scholar 

  28. I. L. Buchbinder, S. M. Kuzenko, and B. A. Ovrut, “On the D = 4, N = 2 non-renormalization theorem,” Phys. Lett. B 433 (3–4), 335–345 (1998); arXiv: hep-th/9710142.

    Google Scholar 

  29. I. Buchbinder, S. Kuzenko, and B. Ovrut, “Covariant harmonic supergraphity for N = 2 super Yang-Mills theories,” in Supersymmetries and Quantum Symmetries, Ed. by J. Wess and E. A. Ivanov (Springer, Berlin, 1999), Lect. Notes Phys. 524, pp. 21–36; hep-th/9810040.

    Google Scholar 

  30. I. L. Buchbinder, S. M. Kuzenko, and A. A. Tseytlin, “Low-energy effective actions in N = 2, 4 superconformal theories in four dimensions,” Phys. Rev. D 62 (4), 045001 (2000); arXiv: hep-th/9911221.

    MathSciNet  Google Scholar 

  31. I. L. Buchbinder, A. Yu. Petrov, and A. A. Tseytlin, “Two-loop N = 4 super-Yang-Mills effective action and interaction between D3-branes,” Nucl. Phys. B 621 (1-2), 179–207 (2002); arXiv: hep-th/0110173.

    Google Scholar 

  32. I. L. Buchbinder and N. G. Pletnev, “Construction of one-loop N = 4 SYM effective action in the harmonic superspace approach,” J. High Energy Phys. 2005 (09), 073 (2005); arXiv: hep-th/0504216.

    MathSciNet  Google Scholar 

  33. I. L. Buchbinder and N. G. Pletnev, “Hypermultiplet dependence of one-loop effective action in the N = 2 superconformal theories,” J. High Energy Phys. 2007 (04), 096 (2007); arXiv: hep-th/0611145.

    MathSciNet  Google Scholar 

  34. I. L. Buchbinder and N. G. Pletnev, “Effective actions in N = 1, D5 supersymmetric gauge theories: Harmonic superspace approach,” J. High Energy Phys. 2015 (11), 130 (2015); arXiv: 1510.02563 [hep-th].

    MathSciNet  MATH  Google Scholar 

  35. I. L. Buchbinder, N. G. Pletnev, and I. B. Samsonov, “Effective action of three-dimensional extended supersymmetric matter on gauge superfield background,” J. High Energy Phys. 2010 (04), 124 (2010); arXiv: 1003.4806 [hep-th].

    MathSciNet  MATH  Google Scholar 

  36. I. L. Buchbinder, N. G. Pletnev, and I. B. Samsonov, “Low-energy effective actions in three-dimensional extended SYM theories,” J. High Energy Phys. 2011 (01), 121 (2011); arXiv: 1010.4967 [hep-th].

    MATH  Google Scholar 

  37. I. Chepelev and A. A. Tseytlin, “Interactions of type IIB D-branes from the D-instanton matrix model,” Nucl. Phys. B 511 (3), 629–646 (1998); arXiv: hep-th/9705120.

    MathSciNet  MATH  Google Scholar 

  38. B. de Wit, M. T. Grisaru, and M. Roček, “Nonholomorphic corrections to the one-loop N = 2 super Yang-Mills action,” Phys. Lett. B 374 (4), 297–303 (1996); arXiv: hep-th/9601115.

    MathSciNet  Google Scholar 

  39. M. Dine and N. Seiberg, “Comments on higher derivative operators in some SUSY field theories,” Phys. Lett. B 409 (1–4), 239–244 (1997); arXiv: hep-th/9705057.

    MathSciNet  Google Scholar 

  40. M. R. Douglas, “On D = 5 super Yang-Mills theory and (2, 0) theory,” J. High Energy Phys. 2011 (02), 011 (2011); arXiv: 1012.2880 [hep-th].

    MathSciNet  MATH  Google Scholar 

  41. J. M. Drummond, P. J. Heslop, P. S. Howe, and S. F. Kerstan, “Integral invariants in N = 4 SYM and the effective action for coincident D-branes,” J. High Energy Phys. 2003 (08), 016 (2003); arXiv: hep-th/0305202.

    MathSciNet  Google Scholar 

  42. E. S. Fradkin and A. A. Tseytlin, “Quantum properties of higher dimensional and dimensionally reduced supersymmetric theories,” Nucl. Phys. B 227 (2), 252–290 (1983).

    MathSciNet  Google Scholar 

  43. A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, and E. Sokatchev, “Unconstrained N = 2 matter, Yang-Mills and supergravity theories in harmonic superspace,” Classical Quantum Gravity 1 (5), 469–498 (1984).

    MathSciNet  Google Scholar 

  44. A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, “Harmonic supergraphs: Green functions,” Classical Quantum Gravity 2 (5), 601–616 (1985).

    MathSciNet  MATH  Google Scholar 

  45. A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, “Harmonic supergraphs: Feynman rules and examples,” Classical Quantum Gravity 2 (5), 617–630 (1985).

    MathSciNet  MATH  Google Scholar 

  46. A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky, and E. S. Sokatchev, Harmonic Superspace (Cambridge Univ. Press, Cambridge, 2001).

    MATH  Google Scholar 

  47. A. Giveon and D. Kutasov, “Brane dynamics and gauge theory,” Rev. Mod. Phys. 71 (4), 983–1084 (1999); arXiv: hep-th/9802067.

    MathSciNet  MATH  Google Scholar 

  48. F. Gonzalez-Rey, B. Kulik, I. Y. Park, and M., “Self-dual effective action of N = 4 super-Yang-Mills,” Nucl. Phys. B 544 (1–2), 218–242 (1999); arXiv: hep-th/9810152.

    MathSciNet  MATH  Google Scholar 

  49. F. Gonzalez-Rey and M. Roček, “Nonholomorphic N = 2 terms in N = 4 super Yang-Mills theory: 1-loop calculation in N = 2 superspace,” Phys. Lett. B 434 (3-4), 303–311 (1998); arXiv: hep-th/9804010.

    MathSciNet  Google Scholar 

  50. T. W. Grimm, T.-W. Ha, A. Klemm, and D. Klevers, “The D5-brane effective action and superpotential in N = 1 compactifications,” Nucl. Phys. B 816 (1-2), 139–184 (2009); arXiv: 0811.2996 [hep-th].

    MathSciNet  MATH  Google Scholar 

  51. P. S. Howe and K. S. Stelle, “Ultraviolet divergences in higher dimensional supersymmetric Yang-Mills theories,” Phys. Lett. B 137 (3-4), 175–180 (1984).

    Google Scholar 

  52. P. S. Howe and K. S. Stelle, “Supersymmetry counterterms revisited,” Phys. Lett. B 554 (3–4), 190–196 (2003); arXiv: hep-th/0211279.

    MathSciNet  MATH  Google Scholar 

  53. P. S. Howe, K. S. Stelle, and P. C. West, “N = 1, d = 6 harmonic superspace,” Classical Quantum Gravity 2 (6), 815–821 (1985).

    MathSciNet  MATH  Google Scholar 

  54. E. A. Ivanov, A. V. Smilga, and B. M. Zupnik, “Renormalizable supersymmetric gauge theory in six dimensions,” Nucl. Phys. B 726 (1-2), 131–148 (2005); arXiv: hep-th/0505082.

    Google Scholar 

  55. V. K. Krivoshchekov, A. A. Slavnov, and L. O. Chekhov, “Effective Lagrangian for supersymmetric quantum chromodynamics and the problem of dynamical breaking of supersymmetry,” Theor. Math. Phys. 72 (1), 686–693 (1987) [transl. from Teor. Mat. Fiz. 72 (1), 12–21 (1987)].

    Google Scholar 

  56. S. M. Kuzenko, “Self-dual effective action of N = 4 SYM revisited,” J. High Energy Phys. 2005 (03), 008 (2005); arXiv: hep-th/0410128.

    MathSciNet  Google Scholar 

  57. S. M. Kuzenko, “Five-dimensional supersymmetric Chern-Simons action as a hypermultiplet quantum correction,” Phys. Lett. B 644 (1), 88–93 (2007); arXiv: hep-th/0609078.

    MathSciNet  MATH  Google Scholar 

  58. S. M. Kuzenko and W. D. Linch III, “On five-dimensional superspaces,” J. High Energy Phys. 2006 (02), 038 (2006); hep-th/0507176.

    MathSciNet  Google Scholar 

  59. S. M. Kuzenko and I. N. McArthur, “Effective action of N = 4 super Yang-Mills: N = 2 superspace approach,” Phys. Lett. B 506 (1-2), 140–146 (2001); arXiv: hep-th/0101127.

    Google Scholar 

  60. S. M. Kuzenko and I. N. McArthur, “Hypermultiplet effective action: N = 2 superspace approach,” Phys. Lett. B 513 (1-2), 213–222 (2001); arXiv: hep-th/0105121.

    Google Scholar 

  61. S. M. Kuzenko and I. N. McArthur, “On the two-loop four-derivative quantum corrections in 4D N = 2 super-conformal field theories,” Nucl. Phys. B 683 (1-2), 3–26 (2004); arXiv: hep-th/0310025.

    Google Scholar 

  62. N. Lambert, C. Papageorgakis, and M. Schmidt-Sommerfeld, “M5-branes, D4-branes and quantum 5D super-Yang-Mills,” J. High Energy Phys. 2011 (01), 083 (2011); arXiv: 1012.2882 [hep-th].

    MathSciNet  MATH  Google Scholar 

  63. N. Lambert, C. Papageorgakis, and M. Schmidt-Sommerfeld, “Deconstructing (2, 0) proposals,” Phys. Rev. D 88 (2), 026007 (2013); arXiv: 1212.3337 [hep-th].

    Google Scholar 

  64. U. Lindström, F. Gonzalez-Rey, M. Roček, and R. von Unge, “On N = 2 low energy effective actions,” Phys. Lett. B 388 (3), 581–587 (1996); arXiv: hep-th/9607089.

    MathSciNet  MATH  Google Scholar 

  65. D. A. Lowe and R. von Unge, “Constraints on higher derivative operators in maximally supersymmetric gauge theory,” J. High Energy Phys. 1998 (11), 014 (1998); arXiv: hep-th/9811017.

    MathSciNet  MATH  Google Scholar 

  66. N. Markus and A. Sagnotti, “A test of finiteness predictions for supersymmetric theories,” Phys. Lett. B 135 (1-3), 85–90 (1984).

    Google Scholar 

  67. N. Markus and A. Sagnotti, “The ultraviolet behavior of N = 4 Yang-Mills and the power counting of extended superspace,” Nucl. Phys. B 256, 77–108 (1985).

    Google Scholar 

  68. V. Periwal and R. von Unge, “Accelerating D-branes,” Phys. Lett. B 430 (1-2), 71–76 (1998); arXiv: hepth/9801121.

    MathSciNet  Google Scholar 

  69. I. B. Samsonov, “Low-energy effective action in two-dimensional SQED: A two-loop analysis,” J. High Energy Phys. 2017 (07), 146 (2017); arXiv: 1704.04148 [hep-th].

    MathSciNet  MATH  Google Scholar 

  70. N. Seiberg, “Notes on theories with 16 supercharges,” Nucl. Phys. B, Proc. Suppl. 67 (1–3), 158–171 (1998); arXiv: hep-th/9705117.

    MathSciNet  MATH  Google Scholar 

  71. A. A. Slavnov, “Ward identities in gauge theories,” Theor. Math. Phys. 10 (2), 99–104 (1972) [transl. from Teor. Mat. Fiz. 10 (2), 153–161 (1972)].

    Google Scholar 

  72. A. A. Slavnov, “Renormalization of supersymmetric quantum electrodynamics,” Theor. Math. Phys. 23 (1), 305–310 (1975) [transl. from Teor. Mat. Fiz. 23 (1), 3–10 (1975)].

    Google Scholar 

  73. A. A. Slavnov, “Renormalization of supersymmetric gauge theories. II: Non-Abelian case,” Nucl. Phys. B 97 (1), 155–164 (1975).

    Google Scholar 

  74. A. A. Slavnov, L. O. Chekhov, and V. K. Krivoshchekov, “SUSY QCD effective action in the large N(c) limit,” Phys. Lett. B 194 (2), 236–240 (1987).

    Google Scholar 

  75. J. C. Taylor, “Ward identities and charge renormalization of the Yang-Mills field,” Nucl. Phys. B 33 (2), 436–444 (1971).

    MathSciNet  Google Scholar 

  76. A. A. Tseytlin, “On non-abelian generalisation of the Born-Infeld action in string theory,” Nucl. Phys. B 501 (1), 41–52 (1997); arXiv: hep-th/9701125.

    MathSciNet  MATH  Google Scholar 

  77. A. A. Tseytlin and L. Casarin, “One-loop β-functions in 4-derivative gauge theory in 6 dimensions,” J. High Energy Phys. 2019 (08), 159 (2019); arXiv: 1907.02501 [hep-th].

    MathSciNet  MATH  Google Scholar 

  78. S. Weinberg, The Quantum Theory of Fields, Vol. 2: Modern Applications (Cambridge Univ. Press, Cambridge, 1996).

    MATH  Google Scholar 

  79. B. M. Zupnik, “Six-dimensional supergauge theories in harmonic superspace,” Sov. J. Nucl. Phys. 44 (3), 512–517 (1986) [transl. from Yad. Fiz. 44 (3), 794–802 (1986)].

    Google Scholar 

  80. B. M. Zupnik, “The action of the supersymmetric N = 2 gauge theory in harmonic superspace,” Phys. Lett. B 183 (2), 175–176 (1987).

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank the editors of the Andrei Slavnov jubilee volume for the invitation to contribute to this issue. This review paper is based in part on joint works with Boris Merzlikin, Albert Petrov, Nikolai Pletnev, Igor Samsonov, and Konstantin Stepanyantz. We are sincerely indebted to them.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-02-01046.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. L. Buchbinder or E. A. Ivanov.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2020, Vol. 309, pp. 66–88.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchbinder, I.L., Ivanov, E.A. Hidden Supersymmetry as a Key to Constructing Low-Energy Superfield Effective Actions. Proc. Steklov Inst. Math. 309, 57–77 (2020). https://doi.org/10.1134/S0081543820030050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543820030050

Navigation