Skip to main content
Log in

Accelerator based epithermal neutron source

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We review the current status of the development of accelerator sources of epithermal neutrons for boron neutron capture therapy (BNCT), a promising method of malignant tumor treatment. Particular attention is given to the source of epithermal neutrons on the basis of a new type of charged particle accelerator: tandem accelerator with vacuum insulation and lithium neutron-producing target. It is also shown that the accelerator with specialized targets makes it possible to generate fast and monoenergetic neutrons, resonance and monoenergetic gamma-rays, alpha-particles, and positrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. L. Locher, “Biological effects and therapeutic possibilities of neutrons,” Am. J. Roentgenol. Radium Ther. 36, 1–13 (1936).

    Google Scholar 

  2. J. Chadwick, “The existence of a neutron,” Proc. R. Soc. (London) A136, 692–708 (1932).

    Article  ADS  Google Scholar 

  3. H. J. Taylor and M. Goldhaber, “Detection of nuclear disintegration in a photographic emulsion,” Nature (London) 135, 341–348 (1935).

    Article  ADS  Google Scholar 

  4. P. G. Kruger, “Some biological effects of nuclear disintegration products on neoplastic tissue,” Proc. Natl. Acad. Sci. USA 26, 181–192 (1940).

    Article  ADS  Google Scholar 

  5. W. H. Sweet, “The uses of nuclear disintegration in the diagnosis and treatment of brain tumor,” N. Engl. J. Med. 245, 875–878 (1951).

    Article  Google Scholar 

  6. W. H. Sweet and M. Javid, “The possible use of slow neutrons plus boron-10 in the therapy of intracranial tumors,” Trans. Am. Neurol. Assoc. 76, 60–63 (1951).

    Google Scholar 

  7. Neutron Capture Therapy. Principles and Applications, Ed. by W. Sauerwein, A. Wittig, R. Moss, and Y. Nakagawa, (Springer, Berlin, 2012), p. 553.

  8. L. E. Farr, W. H. Sweet, J. S. Robertson, C. G. Foster, H. B. Locksley, D. L. Sutherland, M. L. Mendelsohn, and E. E. Syickley, “Neutron capture therapy with boron in the treatment of glioblastoma multiforme,” Am. J. Roent. 71, 279–293 (1954).

    Google Scholar 

  9. J. T. Goldwin, L. E. Farr, W. H. Sweet, and J. S. Robertson, “Pathology study of eight patients with glioblastoma multiforme treated by neutron capture therapy using boron-10,” Cancer 8, 601–615 (1955).

    Article  Google Scholar 

  10. D. N. Slatkin, “A history of boron neutron capture therapy of brain tumours,” Brain 114, 1609–1629 (1991).

    Article  Google Scholar 

  11. W. Sauerwein, “Principles and history of neutron capture therapy,” Strahlenther Onkol. 169, 1–6 (1993).

    Google Scholar 

  12. A. Soloway, H. Hatanaka, and M. Davis, “Penetration of brain and brain tumor. 7. Tumor binding sulfhydryl boron compounds,” J. Med. Chem. 10, 714–717 (1967).

    Article  Google Scholar 

  13. H. Hatanaka, “Clinical results of boron neutron capture therapy,” Basic Life Sci. 54, 15–21 (1990).

    Google Scholar 

  14. Y. Mishima, M. Ichihashi, S. Hatta, C. Honda, A. Sasase, K. Yamamura, K. Kenda, T. Kobayashi, and H. Fukuda, “Selective thermal neutron capture therapy and diagnosis of malignant melanoma: from basic studies to first clinical treatment,” Basic Life Sci. 50, 251–260 (1989).

    Google Scholar 

  15. A. Granada, J. Capala, M. Chadha, J. Codere, A. Diaz, A. Elowitz, I. Iwai, D. Joel, H. Liu, R. Ma, N. Pendzick, N. Peress, M. Shady, D. Slatkin, G. Tyson, and L. Wielopolski, “Boron neutron capture therapy for glioblastoma multiforme: interim results from the phase I/II dose-escalation studies,” J. Neurosurg. 44 (6), 1182–1192 (1999).

    Google Scholar 

  16. P. Busse, O. Harling, M. Palmer, W. Kiger, III, J. Kaplan, I. Kaplan, C. Chuang, J. Goorley, K. Riley, T. Newton, A. Santa Cruz, X. Liu, and R. Zamenhof, “A critical examination of the results from the Harvard-MIT NCT program phase I clinical trials of neutron capture therapy for intracranial disease,” J. Neuro-Oncol. 62 (1), 11–121 (2003).

    Article  Google Scholar 

  17. W. Sauerwein and A. Zurlo, “The EORTC boron neutron capture therapy (BNCT) group: achievements and future projects,” Eur. J. Cancer 38 (4), S31–S34 (2002).

    Article  Google Scholar 

  18. H. Joensuu, L. Kankaanranta, T. Seppala, I. Auterinen, M. Kalio, M. Kulvik, J. Laakso, J. Vahatalo, M. Kortesniemi, P. Kotiluoto, T. Seren, J. Karila, A. Brander, E. Jarviluoma, P. Ryynanen, A. Pauteu, I. Ruokonen, H. Minn, M. Tenhunen, J. Jaaskelainen, M. Farkkila, and S. Savolainen, “Boron neutron capture therapy of brain tumors: clinical trials at the finish facility using boronophenylalanine,” J. Neuro-Oncol. 62, 123–134 (2003).

    Google Scholar 

  19. J. Capala, B. H. Stenstam, K. Skold, P. Rosenschold, V. Guisti, C. Persson, E. Wallin, A. Brum, L. Franzen, J. Carlsson, L. Salford, C. Ceberg, B. Persson, L. Pellettieri, and R. Heriksson, “Boron neutron capture therapy for glioblastoma multiforme: clinical studies in sweden,” J. Neuro-Oncol. 62, 135–144 (2003).

    Google Scholar 

  20. V. Dbaly, F. Tovarys, H. Honova, L. Petruzelka, K. Prokes, J. Burian, M. Marek, J. Honzatko, I. Tomandl, O. Kriz, I. Janku, and V. Mares, “Contemporary state of neutron capture therapy in Czech Republic. (Part 2),” Ces a Slov Neurol. Neurochir. 66 (1), 60–63 (2002).

    Google Scholar 

  21. Y. Nakagawa, K. Pooh, T. Kobayashi, T. Kageji, S. Uyama, A. Matsumura, and H. Kumada, “Clinical review of the Japanese experience with boron neutron capture therapy and proposed strategy using epithermal neutron beams,” J. Neuro-Oncol. 62, 87–99 (2003).

    Google Scholar 

  22. S. J. Gonzalez, M. R. Bonomi, G. A. Santa Cruz, H. R. Blaumann, O. A. Larrieu Calzetta, P. Menéndez, R. Jiménez Rebagliati, J. Longhino, D. B. Feld, M. A. Dagrosa, C. Argerich, S. G. Castiglia, D. A. Batistoni, S. J. Liberman, and B. M. C. Rothet, “First BNCT treatment of a skin melanoma in Argentina: dosimetric analysis and clinical outcome,” Appl. Radiat. Isot. 61 (5), 1101–1105 (2004).

    Article  Google Scholar 

  23. Y. W. Liu, T. T. Huang, S. H. Jiang, and H. M. Liu, “Renovation of epithermal neutron beam for BNCT at THOR,” Appl. Radiat. Isot. 61 (5), 1039–1043 (2004).

    Article  Google Scholar 

  24. I. Kato, K. Ono, Y. Sakurai, M. Ohmae, A. Maruhashi, Y. Imahori, M. Kirihata, M. Nakazawa, and Y. Yura, “Effectiveness of BNCT for recurrent head and neck malignancies,” Appl. Radiat. Isot. 61 (5), 1069–1073 (2004).

    Article  Google Scholar 

  25. L. Kankaanranta, T. Seppala, H. Koivunovo, K. Saariliagti, T. Atula, J. Collan, E. Salli, M. Kortesniemi, J. Simola, P. Valimaki, A. Makitie, M. Sappanen, H. Minn, H. Revitzer, M. Kouri, et al., “Boron neutron capture therapy in the treatment of locally recurred head and neck cancer: final analysis of a phase I/II trial,” Int. J. Radiat. Oncol. Biol. Phys. 82 (1), e67–e71 (2007).

    Article  Google Scholar 

  26. Y. Tamura, S. Miyatake, N. Nonogichi, S. Miyata, K. Yokoyama, T. Kuroiwa, M. Asada, H. Tanabe, and K. Ono, “Boron neutron capture therapy for recurrent malignant melanoma. Case report,” J. Neurosurg. 105 (6), 898–903 (2006).

    Article  Google Scholar 

  27. M. Suzuki, K. Endo, H. Satoh, Y. Sakurai, H. Kumada, H. Kimura, S. Masunaga, Y. Kinashi, K. Nagata, A. Maruhashi, and K. Ono, “A novel concept of treatment of diffuse or multiple pleural tumors by boron neutron capture therapy (BNCT),” Radiother. Oncol. 88 (2), 192–195 (2008).

    Article  Google Scholar 

  28. M. Suzuki, Y. Sakurai, S. Hagiwara, S. Masunaga, Y. Kinashi, K. Nagata, A. Maruhashi, M. Kudo, and K. Ono, “First attempt of boron neutron capture therapy (BNCT) for hepatocellular carcinoma,” Jpn. J. Clin. Oncol. 37 (5), 376–381 (2007).

    Article  Google Scholar 

  29. Reference Tables of Physical Quantities, Ed. by I. K. Kikoin (Atomizdat, Moscow, 1976) [in Russian].

  30. V. Kononov, M. Bokhovko, and O. Kononov, “Accelerator based neutron sources for medicine,” in Proc. Int. Symp. on Boron Neutron Capture Therapy (Novosibirsk, 2004), pp. 62–68.

    Google Scholar 

  31. T. Blue and J. Yanch, “Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors,” J. Neuro-Oncol. 62, 19–31 (2003).

    Google Scholar 

  32. C. Lee and X. Zhou, “Thick target neutron yields for the 7Li(p,n)7Be reaction near threshold,” Nucl. Instrum. Meth. B 152, 1–11 (1999).

    Article  ADS  Google Scholar 

  33. K. Wang, T. Blue, and R. Gabauer, “A neutronic study of an accelerator-based neutron irradiation facility for boron neutron capture therapy,” Nucl. Technol. 84, 93 (1989).

    Google Scholar 

  34. J. Yanch, X. Zhou, R. Shefer, and R. Klinkowstein, “Accelerator-based epithermal neutron beam design for neutron capture therapy,” Med. Phys. 19, 709–721 (1992).

    Article  Google Scholar 

  35. O. Anderson, E. Alpen, G. DeVries, J. Kwan, R. Wells, A. Faltens, and L. Reginato, “ESQ-focused 2.5 MeV dc accelerator for BNCT,” in Proc. 4th Eur. Part. Accelerator Conf. (London, 1994).

    Google Scholar 

  36. Advances in Neutron Capture Therapy, V. 1: Medicine and Physics, Ed. by B. Larsson (Elsevier, 1997).

  37. J. L. Duggan, (Ed.) “Application of accelerators in research and industry,” AIP Conf. Proc. 392 (1997).

  38. Proc. 1st Int. Workshop on Accelerator-based Neutron Sources for BNCT (Jackson, WN, USA CONF-940976, 1994).

  39. J. Yanch, “Research in boron neutron capture therapy at MIT LABA,” Application of Accelerators in Research and Industry. Part Two, 1281–1284. Woodbury, Ed. by J. L. Duggan, I. L. Morgan (AIP Press, New York, 1996).

    Google Scholar 

  40. D. P. Gierga, Ph.D. Thesis (Massachusets Institute of Technology, 2001).

    Google Scholar 

  41. J. Kwan, G. Ackerman, C. Chan, W. Cooper, G. Vries, W. Steele, M. Stuart, M. Vella, R. Wells, T. Inoue, Y. Okumura, and M. Mizuno, “Acceleration of 100 mA of H–in a single channel electrostatic quadrupole accelerator,” Rev. Sci. Instrum. 66, 3864–3868 (1995).

    Article  ADS  Google Scholar 

  42. B. Ludewigt, W. Chu, R. Donahue, J. Kwan, K. Leung, L. Reginato, and R. Wells, “An epithermal neutron source for BNCT based on an ESQ-accelerator,” in Proc. Topical Meeting on Nuclear Applications of Accelerator Technology (Albuquerque, New Mexico, 1997).

    Google Scholar 

  43. T. P. Wangler, J. E. Stovall, T. S. Bhatia, et al., “Conceptual design of an RFQ accelerator-based neutron source for boron neutron capture therapy,” Los Alamos National Laboratory article LAUR89-912, 1989: Particle Accelerator Conf. (Chicago, IL, 1989).

    Google Scholar 

  44. W. D. Cornelius, “CW operation of the FMIT RFQ accelerator,” Nucl. Instrum. Meth. Phys. Res. B 10–11, 859–863 (1985).

    Article  Google Scholar 

  45. G. E. McMichael, T. J. Yule, and X.-L. Zhou, “The argon ACWL, a potential accelerator-based neutron source for BNCT,” Nucl. Instrum. Meth. Phys. Res. B 99 (1–4), 847–850 (1995).

    Article  ADS  Google Scholar 

  46. T. Beynon, K. S. Forcey, S. Green, G. Cruickshank, and N. James, “Status of the Birmingham accelerator based BNCT facility,” Research and Development in Neutron Capture Therapy, Sauerwein M.W., Moss R., Wittig A. (Eds.) (Bologna: Monduzzi Editore, Intern. Proc. Division, 2002), pp. 225–228.

    Google Scholar 

  47. B. I. Al’bertinskii, I. V. Kuritsyna, O. F. Nikolaev, and O. B. Ovchinnikov, “High-voltage supply for 2 MeV accelerators of ions and electrons,” Prib. Tekh. Eksper. 3, 43–46 (1971) [in Russian].

    Google Scholar 

  48. A. Kreiner, H. Paolo, A. Burton, J. Kesque, A. Vakda, M. Debray, Y. Giboudot, P. Levinas, M. Fraiman, V. Romeo, H. Somacal, and D. Minsky, “Development of a tandem-electrostatic-quadropole for accelerator-based boron neutron capture therapy,” in Proc. 8th Intern. Topical Meeting on Nuclear Applications and Utilization of Accelerators (Pocatello, Idaho, 2007), pp. 373–379.

    Google Scholar 

  49. A. Kreiner, V. Vento, P. Levinas, J. Bergueiro, H. Di Paolo, A. Burlon, J. Kesque, A. Valda, M. Debray, H. Somacal, D. Minsky, L. Estrada, A. Hazarabedian, F. Johann, J. Sandin Suarez, et al., “Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT,” Appl. Radiat. Isot. 67, S266–S269 (2009).

  50. J. Esposito, P. Colautti, A. Pisent, L. Tecchio, S. Agosteo, Sanchez C. Ceballos, V. Conte, L. De Nardo, A. Gervash, R. Giniyatulin, D. Moro, A. Makhankov, I. Mazul, G. Rosi, et. al., “The accelerator driven SPES-BNCT project at INFN Legnaro LABS,” in Proc. 8th Intern. Topical Meeting on Nuclear Applications and Utilization of Accelerators (Pocatello, Idaho, 2007), pp. 380–387.

    Google Scholar 

  51. J. Esposito, P. Colautti, S. Fabritsiev, A. Gervash, R. Giniyatulin, V. N. Lomasov, A. Makhankov, I. Mazul, A. Pisent, A. Pokrovsky, M. Rumyantsev, V. Tanchuk, and L. Tecchio, “Be target development for the accelerator-based SPES-BNCT facility at INFN Legnaro,” Appl. Radiat. Isot. 67, S270–S273 (2009).

    Article  Google Scholar 

  52. T. Smick, G. Ryding, P. Farrell, N. Smick, W. Oark, P. Eide, T. Sakase, M. Venkatesan, and M. Vyvoda, “HyperionTM accelerator technology for boron neutron capture therapy,” in Book of Abstr. 16th Int. Cong. on Neutron Capture Therapy (Finland, Helsinki, 2014), 138–139.

    Google Scholar 

  53. E. Forton, F. Stichelbaut, A. Cambriani, W. Kleeven, J. Ahlback, and Y. Jongen, “Overview of the IBA accelerator-based BNCT system,” Appl. Rad. Isot. 67 (7–8), S262–S268 (2009).

    Article  Google Scholar 

  54. K. Tsuchida, Y. Kiyanagi, A. Uritani, K. Watanabe, H. Shimizu, K. Hirota, and M. Kitaguchi, “Development of an accelerator-driven compact neutron source for BNCT in Nagoya University,” in Book of Abstr. 16th Int. Cong. on Neutron Capture Therapy (Finland, Helsinki, 2014), 206–207.

    Google Scholar 

  55. Y. Mori and M. Muto, “Neutron source with FFAG-ERIT,” in Advances in Neutron Capture Therapy (Proc. ICNCT-12, 2006), pp. 360–363.

    Google Scholar 

  56. K. Okabe, M. Muto, and Y. Mori, “Development of FFAG-ERIT ring,” in Proc. EPAC (Edinburgh, Scotland, 2006), pp. 1675–1677.

    Google Scholar 

  57. Y. Mori, Y. Ishi, Y. Kuriyama, Y. Sakurai, T. Uesugi, K. Okabe, and I. Sakai, “Neutron source with emittance recovery internal target,” in Proc. 23rd Particle Accelerator Conf. (Vancouver, Canada, 2009), pp. 3145–3147.

    Google Scholar 

  58. H. Tanaka, Y. Sakurai, M. Suzuki, T. Takata, S. Masunaga, Y. Kinashi, G. Kashino, Y. Liu, T. Mitsumoto, T. Yajima, H. Tsutsui, M. Takada, A. Maruhashi, and K. Ono, “Improvement of dose distribution in phantom by using epithermal neutron source based on the Be(p,n) reaction using a 30 MeV proton cyclotron,” Appl. Radiat. Isot. 67 (7/8) S258–S261 (2009).

    Article  Google Scholar 

  59. H. Tanaka, Y. Sakurai, M. Suzuki, S. Masunaga, T. Mitsumoto, K. Fujita, G. Kashino, Y. Kinashi, Y. Liu, M. Takada, K. Ono, and A. Maruhashi, “Experimental verification of beam characteristics for cyclotron-based epithermal neutron source (C-BENS),” Appl. Radiat. Isot. 69 (12) 1642–1645 (2011).

    Article  Google Scholar 

  60. H. Kumada, A. Matsumura, H. Sakurai, T. Sakae, M. Yoshioka, H. Kobayashi, H. Matsumoyo, Y. Kijanagi, T. Shibata, and H. Nakashima, “Project of development of the linac based NCT facility in University of Tsukuba,” in Abstr. 15th ICNCT (Tsukuba, Japan, 2012) p. 109.

    Google Scholar 

  61. Y Abe, M. Fuse, R. Fujii, M. Nakamura, Y. Imahori, J. Itami, “Hospital-based boron neutron capture therapy in National Cancer Center. An installation design for the accelerator-based epithermal neutron source,” in Abstr. 15th ICNCT (Tsukuba, Japan, 2012), pp. 109–110.

    Google Scholar 

  62. B. Bayanov, V. Belov, E. Bender, M. Bokhovko, G. Dimov, V. Kononov, O. Kononov, N. Kuksanov, V. Palchikov, V. Pivovarov, R. Salimov, G. Silvestrov, A. Skrinsky, and S. Taskaev, “Accelerator based neutron source for the neutron-capture and fast neutron therapy at hospital,” Nucl. Instrum. Meth. Phys. Res. A 413 (2/3), 397–426 (1998).

    Article  ADS  Google Scholar 

  63. Yu. I. Bel’chenko, A. V. Burdakov, V. I. Davydenko, V. M. Dolgushin, A. N. Dranichnikov, A. A. Ivanov, V. V. Kobets, S. G. Konstantinov, A. S. Krivenko, A. M. Kudryavtsev, V. Ya. Savkin, A. L. Sanin, I. N. Sorokin, S. Yu. Taskaev, M. A. Tiunov, A. D. Khilchenko, and V. V. Shirokov, “Tandem accelerator with vacuum isolation as the base for medical complex for treating malignant tumors by using BNCT and customs system for remote detection of explosives,” Vestn. NGU: Ser. Fizika 1 (2) 82–88 (2006).

    Google Scholar 

  64. Proceedings of International Symposium on Boron Neutron Capture Therapy, Ed by S. Taskaev (Novosibirsk, Russia, 2004) p. 113.

  65. Y. Belchenko and E. Grigoryev, “Surface-plasma negative ion source for the medicine accelerator,” Rev. Sci. Instrum. 73, 939 (2002).

    Article  ADS  Google Scholar 

  66. Yu. Belchenko, A. Sanin, I. Gusev, A. Khilchenko, A. Kvashnin, V. Rashchenko, V. Savkin, and P. Zubarev, “Direct current H–source for boron neutron capture therapy tandem accelerator,” Rev. Sci. Instrum. 79, 02A521 (2008).

    Article  Google Scholar 

  67. T. Akhmetov, V. Davydenko, A. Ivanov, V. Kobets, A. Medvedko, D. Skorobogatov, and M. Tiunov, “Radially uniform circular sweep of ion beam,” Rev. Sci. Instrum. 77, 03106 (2006).

    Article  Google Scholar 

  68. R. Salimov, V. Cherepkov, Yu. Golubenko, G. Krainov, M. Korabelnikov, S. Kuznetsov, N. Kuksanov, A. Malinin, P. Nemytov, S. Petrov, V. Prudnikov, S. Fadeev, and M. Veis, “DC high power electron accelerators of ELV-series: status, development, applications,” Rad. Phys. Chem. 57, 661–665 (2000).

    Article  ADS  Google Scholar 

  69. V. V. Shirokov, “Investigation of the electrical strength of high-voltage vacuum gaps,” Prib. Tekh. Eksper. 5, 148–152 (1990).

    Google Scholar 

  70. G. I. Dimov, Yu. I. Bel’chenko, G. S. Krainov, R. A. Salimov, N. K. Kuksanov, G. I. Sil’vestrov, I. N. Sorokin, S. Yu. Taskaev, M. A. Tiunov, D. K. Toporkov, and V. V. Shirokov, “Tandem accelerator with vacuum insulation for boron-neutron-capture therapy and detection of explosives by resonance absorption of γ-rays,” At. Energy 94 (2), 155–159 (2003).

    Article  Google Scholar 

  71. I. N. Sorokin and V. V. Shirokov, “High-voltage elements of a tandem accelerator with vacuum insulation,” Instrum. Exp. Tech. 50, 719–724 (2007).

    Article  Google Scholar 

  72. I. N. Sorokin and S. Yu. Taskaev, “A voltage buildup at high-voltage vacuum gaps of a tandem accelerator with vacuum insulation,” Instrum. Exp. Tech. 57, 377–380 (2014).

    Article  Google Scholar 

  73. V. I. Aleinik, A. A. Ivanov, A. S. Kuznetsov, I. N. Sorokin, and S. Yu. Taskaev, “Dark current of a tandem accelerator with vacuum insulation,” Instrum. Exp. Tech. 56, 497–505 (2013).

    Article  Google Scholar 

  74. I. N. Sorokin, “High-voltage strength of the tandem accelerator with vacuum insulation” Candidates’s Dissertation in Mathematics and Physics (Novosibirsk, 2014).

    Google Scholar 

  75. G. E. Derevyankin, G. S. Krainov, A. M. Kryuchkov, G. I. Sil’vestrov, S. Yu. Taskaev, and M. A. Tiunov, “Ion-optical tract of 2.5 MeV 10 mA tandem accelerator,” Preprint IYaF 2002-24 (Novosibirsk, 2002).

    Google Scholar 

  76. V. I. Aleinik, A. G. Bashkirtsev, A. S. Kuznetsov, A. N. Makarov, I. N. Sorokin, S. Yu. Taskaev, M. A. Tiunov, and I. M. Shchudlo, “Optimization of the transporting system of the negative hydrogen ions in tandem accelerator with vacuum insulation,” Dokl. Akad. Nauk Vyssh. Shkoly RF 20 (1), 47–55 (2013).

    Google Scholar 

  77. A. Makarov, V. Aleynik, A. Bashkirtsev, A. Kuznetsov, I. Schudlo, I. Sorokin, S. Taskaev, and M. Tiunov, “Optimization of the negative hydrogen ion beam injection into the tandem accelerator with vacuum insulation,” in Proc. 23 Russian Particle Accelerator Conference, RUPAC2012 (St.-Petersburg, 2012), pp. 623–625.

    Google Scholar 

  78. G. E. Derevyankin, G. I. Dimov, V. M. Dolgushin, A. N. Dranichnikov, G. S. Krainov, A. S. Krivenko, V. E. Pal’chikov, M. V. Petrichenkov, E. I. Pokhlebenin, R. A. Salimov, G. I. Sil’vestrov, S. Yu. Taskaev, and V. V. Shirokov, “Rechargeable target of a 40 mA 2 MeV tandem accelerator,” Preprint No. IYaF 2001-23 (Novosibirsk, 2001).

    Google Scholar 

  79. V. I. Aleinik, A. S. Kuznetsov, I. N. Sorokin, S. Yu. Taskaev, M. A. Tiunov, and I. M. Shchudlo, “Calibration of the stripping target of a tandem accelerator with vacuum insulation,” Nauch. Vestn. Novosibirsk Gos. Tekh. Univ. 50 (1), 83–92 (2013).

    Google Scholar 

  80. A. Kuznetsov, V. Aleynik, I. Shchudlo, I. Sorokin, S. Taskaev, and M. Tiunov, “Calibration testing of the stripping target of the vacuum insulated tandem accelerator,” in Proc. 23 Russian Particle Accelerator Conference, RUPAC2012 (Saint-Petersburg, Russia, 2012), pp. 560–562.

    Google Scholar 

  81. A. S. Kuznetsov, G. N. Malyshkin, A. N. Makarov, I. N. Sorokin, Yu. S. Sulyaev, and S. Yu. Taskaev, “First experiments on neutron detection on the accelerator-based source for boron neutron capture therapy,” Tech. Phys. Lett. 35 (4) 346–348 (2009).

    Article  ADS  Google Scholar 

  82. A. Kuznetsov, Yu. Belchenko, A. Burdakov, V. Davydenko, A. Donin, A. Ivanov, S. Konstantinov, A. Krivenko, A. Kudryavtsev, K. Mekler, A. Sanin, I. Sorokin, Yu. Sulyaev, S. Taskaev, V. Shirokov and Yu. Eidelman, “The detection of nitrogen using nuclear resonance absorption of mono-energetic gamma-rays,” Nucl. Instrum. Meth. Phys. Res. A 606, 238–242 (2009).

    Article  ADS  Google Scholar 

  83. D. Kasatov, A. Kuznetsov, A. Makarov, I. Shchudlo, I. Sorokin, and S. Taskaev, “Proton beam of 2 MeV 1.6 mA on a tandem accelerator with vacuum insulation,” JINST 9, 12016 (2014).

    Article  ADS  Google Scholar 

  84. W. Biesiot and P. Smith, “Parameters of the 9.17-MeV level in 14N,” Phys. Rev. C 24, 2443–2457 (1981).

    Article  ADS  Google Scholar 

  85. V. I. Aleinik, D. A. Kasatov, A. N. Makarov, and S. Yu. Taskaev, “Measuring the neutron spectrum of the accelerator-based source using the time-of-flight method,” Instrum. Exp. Tech. 57 381–385 (2014).

    Article  Google Scholar 

  86. D. A. Kasatov, A. N. Makarov, S. Yu. Taskaev, and I. M. Shchudlo, “Recording of current accompanying an ion beam in a tandem accelerator with vacuum insulation,” Tech. Phys. Lett. 41 (92) 139–141 (2015).

    Article  ADS  Google Scholar 

  87. S. Yu. Taskaev, RF Patent No. 2013140568 (2013).

    Google Scholar 

  88. V. Belov, S. Fadeev, V. Karasyuk, V. Kononov, O. Kononov, N. Kuksanov, G. Kraynov, Y. Petrov, V. Pidyakov, V. Rachkov, R. Salimov, G. Silvestrov, G. Smirnov, S. Taskaev, and G. Villeval’d, “Neutron producing target for accelerator based neutron source for BNCT,” Research and Development in Neutron Capture Therapy (Monduzzi Editore, 2002), pp. 247–252.

    Google Scholar 

  89. G. G. Smirnov, S. Yu. Taskaev, G. I. Sil’vestrov, and V. N. Kononov, RF Patent No. 2282908 (2006).

    Google Scholar 

  90. G. G. Smirnov, S. Yu. Taskaev, G. I. Sil’vestrov, and V. N. Kononov, RF Patent No. 2282909 (2006).

    Google Scholar 

  91. G. G. Smirnov, S. Yu. Taskaev, G. I. Sil’vestrov, and V. N. Kononov, RF Patent No. 2326513 (2008).

    Google Scholar 

  92. V. Kononov, G. Smirnov, and S. Taskaev, “Tape high power neutron producing target for NCT,” in Program 11th World Cong. on Neutron Capture Therapy (MA, USA, Boston, 2004), pp. 46–47.

    Google Scholar 

  93. B. Bayanov, V. Belov, and S. Taskaev, “Neutron producing target for accelerator based neutron capture therapy,” J. Phys. 41, 460–465 (2006).

    Google Scholar 

  94. V. Belov, S. Fadeev, V. Karasyuk, V. Kononov, O. Kononov, A. Krivenko, N. Markov, V. Palchikov, G. Silvestrov, G. Smirnov, and S. Taskaev, “Neutron producing target for neutron capture therapy,” in Proc. 9th Int. Symp. on Neutron Capture Therapy for Cancer (Osaka, Japan, 2000), pp. 253–254.

    Google Scholar 

  95. O. E. Kononov, V. N. Kononov, and N. A. Solov’ev, “Near-threshold 7Li(p,n)7Be reaction based neutron source for boron neutron capture therapy,” Atomic Energy 94, 469–472 (2003).

    Article  Google Scholar 

  96. B. F. Bayanov, V. P. Belov, and S. Yu. Taskaev, “Neutron-generating target of accelerator neutron source for neutron capture therapy,” Preprint IYaF 2005-4 (Novosibirsk, 2005).

    Google Scholar 

  97. B. Bayanov, V. Belov, V. Kindyuk, E. Oparin, and S. Taskaev, “Lithium neutron producing target for BINP accelerator-based neutron source,” Appl. Radiat. Isot. 61, 817–821 (2004).

    Article  Google Scholar 

  98. H. Andersen and J. Ziegler, Hydrogen Stopping Powers and Ranges in all Elements. Vol. 3 (Pergamon, N. Y., 1977).

    Google Scholar 

  99. N. Cowern, “Range distribution function for energetic ions in matter,” Phys. Rev. A 26, 2518–2526 (1982).

    Article  ADS  Google Scholar 

  100. Sputtering by Particle Bombardment, Ed by R. Berish (Springer, Berlin, 1981).

  101. M. I. Guseva and Yu. V. Martynenko, “Radiation blistering,” Sov. Phys. Usp. 24, 996–1007 (1981).

    Article  ADS  Google Scholar 

  102. D. Fisher, Hydrogen Diffusion in Metals, a 30-Year Retrospective (Scitec Publ., 1999).

    Google Scholar 

  103. Gase und Kohlenstoff in Metallen, Ed. by E. Fromm and E. Gebhardt (Springer, Berlin, 1976).

  104. V. Astrelin, A. Burdakov, P. Bykov, I. Ivanov, A. Ivanov, Y. Jongen, S. Konstantinov, A. Kudryavtsev, K. Kuklin, K. Mekler, S. Polosatkin, V. Postupaev, A. Rovenskikh, S. Sinitskiy, and E. Zubairov, “Blistering of the selected materials irradiated by intense 200 keV proton beam,” J. Nucl. Mater. 396, 43–48 (2010).

    Article  ADS  Google Scholar 

  105. R. Yadava, Singh N. Ibobi, and A. Nigam, “Spongelike blisters on copper by H+ ion implantation at ambient temperatures,” J. Phys. D: Appl. Phys. 13, 2077–2080 (1980).

    Article  ADS  Google Scholar 

  106. S. Melnychuk and R. Meilunas, “Development of a thin film 9.17 MeV gamma ray production target for the contraband detection system,” in Proc. Particle Accelerator Conference (New York, 1999), pp. 2599–2601.

    Google Scholar 

  107. V. N. Kononov, M. V. Bokhovko, O. E. Kononov, and N. P. Kononova, “Gamma-radiation of 7Li(p,n)7Be neutron source,” Preprint FEI-2643 (Obninsk, 1997).

    Google Scholar 

  108. A. Savidou, X. Aslanoglou, T. Paradellis, and M. Pilakouta, “Proton induced thick target γ-ray yields of light nuclei at the energy region E p = 1.0–4.1 MeV,” Nucl. Instrum. Meth. Phys. Res. B 152 (1999).

    Article  Google Scholar 

  109. J. Farrell, V. Dudnikov, N. Guardala, G. Merkel, and S. Taskaev, “An intense positron beam source based on a high current 2 MeV vacuum insulated tandem accelerator,” in 7th Int. Workshop on Positron and Positronium Chemistry (Knoxville, USA, 2002), p. 47.

    Google Scholar 

  110. D. A. Kasatov, A. N. Makarov, S. Yu. Taskaev, and I. M. Shchudlo, “Radiation due to absorption of 2MeV protons in different materials,” Phys. At. Nucl. (2015) (in press, vol. 78, no. 11).

    Google Scholar 

  111. B. F. Bayanov and S. Yu. Taskaev, RF Patent No. WO/2008/147230 (2008).

    Google Scholar 

  112. B. F. Bayanov, E. V. Zhurov, and S. Yu. Taskaev, “Measuring the lithium layer thickness,” Instrum. Exp. Tech. 51 147–149 (2008).

    Article  Google Scholar 

  113. A. Brown, K. Forsey, and M. Scott, “The design and testing high power lithium target for accelerator-based boron neutron capture therapy,” Research and Development in Neutron Capture Therapy (Monduzzi Editore, 2002), pp. 277–282.

    Google Scholar 

  114. B. F. Bayanov, S. Yu. Taskaev, V. I. Obodnikov, and E. G. Tishkovskii, “Effect of the residual gas on the lithium layer of a neutron-generating target,” Instrum. Exp. Tech. 51, 438–442 (2008).

    Article  Google Scholar 

  115. Ya. Z. Kandiev and E. V. Serova, “Tagged particles in radiation transport using the Monte Carlo simulation and computer program PRIZMA,” At. Energy 98, 386–393 (2005).

    Article  Google Scholar 

  116. Schemes of Radionuclide Decay. Energy and Intensity of Radiation (Energoatomizdat, Moscow, 1987) [in Russian].

  117. V. P. Mashkovich and A. V. Kudryavtseva, Protection Against Ionizing Radiation. Reference Book (Energoatomizdat, Moscow, 1995) [in Russian].

    Google Scholar 

  118. Basic Sanitary Rules for Radiation Safety (OSPORB-99) (Minzdrav Rossii, Moscow, 2000) [in Russian].

  119. B. F. Bayanov, Ya. Z. Kandiev, E. A. Kashaeva, G. N. Malyshkin, S. Yu. Taskaev, V. Ya. Chudaev, “A protective subsurface container for holding and temporary storage of activated targets,” Instrum. Exp. Tech. 53 (6), 883–885 (2010).

    Article  Google Scholar 

  120. S. Taskaev, B. Bayanov, V. Belov, and E. Zhoorov, “Development of lithium target for accelerator based neutron capture therapy,” in Adv. Neutron Capture Ther. (Proc. ICNT-12, 2006), pp. 292–295.

    Google Scholar 

  121. T. Mitsumoto, S. Yajiima, H. Tsutsui, et al., “Cyclotron-based neutron source for BNCT” in Proc.14 Int Cong. on Neutron Capture Therapy (Argentina, Buenos Aires, 2010), pp. 510–522.

    Google Scholar 

  122. C. Willis, J. Lenz, and D. Swenson, “High-power lithium target for accelerator-based BNCT,” in Proc. 14 Linear Accelerator Conf. (Victoria, Canada, 2008), pp. 223–225.

    Google Scholar 

  123. S. Park, H. Joo, B. Jang, G. Jeun, J. Kim, and J. Chai, “Thermally optimized lithium neutron producing target design for accelerator-based BNCT,” in Advances in Neutron Capture Therapy (Proc. ICNCT-12, 2006), pp. 319–322.

    Google Scholar 

  124. F. Palamara, F. Mattioda, R. Varone, and V. Guisti, “Proton accelerator-based epithermal neutron beams for BNCT,” Research and Development in Neutron Capture Therapy (Monduzzi Editore, 2002), pp. 283–292.

    Google Scholar 

  125. A. Hawk, T. Blue, J. Woolard, and G. Gupta, “Effects of target thickness on neutron field quality for an ABNS,” Research and Development in Neutron Capture Therapy (Monduzzi Editore, 2002), pp. 253–257.

    Google Scholar 

  126. O. Kononov, V. Kononov, M. Bokhovko, V. Korobeynikov, A. Soloviev, A. Sysoev, I. Gulidov, W. Chu, and D. Nigg, “Optimization of an accelerator-based neutron source for neutron capture therapy,” Appl. Radiat. Isot. 61 (5), 1009–1011 (2004).

    Article  Google Scholar 

  127. G. Bengua, T. Kobayashi, K. Tanaka, and Y. Nakagawa, “Optimization parameters for BDE in BNCT using near threshold 7Li(p,n)7Be direct neutrons,” Appl. Rad. Isot. 61 (5), 1003–1008 (2004).

    Article  Google Scholar 

  128. F. Stichelbaut, E. Forton, and Y. Jongen, “Design of a beam shaping assembly for an accelerator-based BNCT system,” in Adv. Neutron Capture Ther. (Proc. ICNT-12, 2006), pp. 308–311.

    Google Scholar 

  129. K. Tanaka, T. Kobayashi, G. Bengua, Y. Nakagawa, S. Endo, and M. Hoshi, “Characterization indexes of moderator assembly for accelerator-based BNCT using 7Li(p,n)7Be neutrons at proton energy of 2.5MeV,” in Adv. Neutron Capture Ther. (Proc. ICNT-12, 2006), pp. 323–326.

    Google Scholar 

  130. R. Terlizzi, N. Colonna, P. Colangelo, A. Maiorana, S. Marrone, A. Rainò, G. Tagliente, and V. Variale, “Design of an accelerator-based neutron source for neutron capture therapy,” Appl. Radiat. Isot. 67 (7–8), S292–S295 (2009).

    Article  Google Scholar 

  131. D. Minsky, A. Kreiner, and A. Valda, “AB-BNCT beam shaping assembly based on 7Li(p,n)7Be reaction optimization,” Appl. Radiat. Isot. 69 (12), 1668–1671 (2011).

    Article  Google Scholar 

  132. A. Burlon, S. Girola, A. Valda, D. Minsky, A. Kreiner, and D. Sánchez, “Design of a beam shaping assembly and preliminary modeling of a treatment room for accelerator-based BNCT at CNEA,” Appl. Radiat. Isot. 69 (12), 1688–1691 (2011).

    Article  Google Scholar 

  133. J. Goorley, W. Kiger, III, and R. Zamenhof, “Reference dosimetry calculations for neutron capture therapy with comparison of analytical and voxel models,” Med. Phys. 29, 145–156 (2002).

    Article  Google Scholar 

  134. O. Harling and K. Riley, “Fission reactor neutron sources for neutron capture therapy—a critical review,” J. Neuro-Oncol. 62, 7–17 (2003).

    Google Scholar 

  135. M. Arnautova, Ya. Kandiev, D. Lukhminsky, and G. Malyshkin, “Monte Carlo simulation in nuclear geophysics: comparison of the PRIZMA Monte Carlo program and benchmark experiments,” Nucl. Geophys. 7, 407–418 (1993).

    Google Scholar 

  136. S. N. Abramovich, B. Ya. Guzhovskii, V. A. Zherebtsov, and A. G. Zvenigiridskii, Nuclear Constants for Thermonuclear Fusion (Moscow, Tsentr. Nauch. Issled. Inst. Atominform, 1989) [in Russian].

    Google Scholar 

  137. O. Kononov, V. Kononov, V. Korobeinikov, S. Ognev, W. Chu, G. Silvestrov, N. Soloviev, S. Taskaev, and A. Zhitnik, “Investigations of using near-threshold 7Li(p,n)7Be reaction for NCT based on in-phantom dose distribution,” Research and Development in Neutron Capture Therapy (Monduzzi Editore, 2002), pp. 241–246.

    Google Scholar 

  138. G. Bengua, T. Kobayashi, and K. Tanaka, “TPDbased evaluation of near threshold mono-energetic proton energies for the 7Li(p,n)7Be production of neutrons for BNCT,” Phys. Med. Biol. 51, 4095–4109 (2006).

    Article  Google Scholar 

  139. Ya. Kandiev, E. Kashaeva, G. Malyshkin, B. Bayanov, and S. Taskaev, “Optimization of the target of an accelerator-driven neutron source through Monte Carlo numerical simulation of neutron and gamma transport by the PRIZMA code,” Appl. Radiat. Isot. 69 (12), 1632–1634 (2011).

    Article  Google Scholar 

  140. S. Yu. Taskaev and V. V. Kanygin, RF Patent No. 2540124 (2014).

    Google Scholar 

  141. B. Bayanov, A. Burdakov, V. Chudaev, A. Ivanov, S. Konstantinov, A. Kuznetsov, A. Makarov, G. Malyshkin, K. Mekler, I. Sorokin, Yu. Sulyaev, and S. Taskaev, “First neutron generation in the BINP accelerator based neutron source,” Appl. Radiat. Isot. 67 (7–8), S285–S287 (2009).

    Article  Google Scholar 

  142. V. Aleynik, B. Bayanov, A. Burdakov, A. Makarov, S. Sinitskiy, and S. Taskaev, “New technical solution for using the time-of-flight technique to measure neutron spectra,” Appl. Radiat. Isot. 69 (12), 1339–1641 (2011).

    Google Scholar 

  143. V. Aleynik, A. Burdakov, V. Davydenko, A. Ivanov, V. Kanygin, A. Kuznetsov, A. Makarov, I. Sorokin, and S. Taskaev, “BINP accelerator based epithermal neutron source,” Appl. Radiat. Isot. 69 (12), 1635–1638 (2011).

    Article  Google Scholar 

  144. B. Bayanov, E. Kashaeva, A. Makarov, G. Malyshkin, S. Samarin, S. Taskaev, “A neutron producing target for BINP accelerator-based neutron source,” Appl. Radiat. Isot. 67 (7–8), S282–S284 (2009).

    Article  Google Scholar 

  145. B. Bayanov, A. Burdakov, A. Kuznetsov, A. Makarov, S. Sinitskii, Yu. Sulyaev, and S. Taskaev, “Dosimetry and spectrometry at accelerator based neutron source for boron neutron capture therapy,” Radiat. Meas. 45 (10), 1462–1464 (2010).

    Article  Google Scholar 

  146. A. V. Sannikov, V. N. Lebedev, V. N. Kustarev, E. N. Savitskaya, and E. G. Spirov, “Individual dosimeter of mixed radiation DVGN-1: development and investigation of characteristics,” Preprint IFVE 2005-6 (Protvino, 2005).

    Google Scholar 

  147. A. G. Alekseev, Yu. V. Mokrov, and S. V. Morozova, “An investigation of the sensitivity of various albedo neutron dosimeters aimed at corrections the readings,” Phys. Part. Nucl. Lett. 9 (2), 192–201 (2012).

    Article  Google Scholar 

  148. L. A. Mostovich, N. V. Gubanova, O. S. Kutsenko, V. I. Aleinik, A. S. Kuznetsov, A. N. Makarov, I. N. Sorokin, S. Yu. Taskaev, G. I. Nepomnyashchikh, and E. V. Grigor’eva, “Impact of epithermal neutrons on the survivability of malignant cells of glioblastoma in vitro,” Bull. Exper. Biol. Medicine 151 (2), 229–235 (2011).

    Article  Google Scholar 

  149. N. Gubanova, V. Kanygin, A. Kichigin, and S. Taskaev, “Evaluation of micronucleation and viability of glioma cells in vitro neutron beams irradiated,” submitted for publication to Appl. Radiat. Isot. (2015).

    Google Scholar 

  150. V. Aleynik, A. Bashkirtsev, V. Kanygin, D. Kasatov, A. Kuznetsov, A. Makarov, I. Schudlo, I. Sorokin, S. Taskaev, and M. Tiunov, “Current progress and future prospects of the VITA based neutron source,” Appl. Radiat. Isot. 88, 177–179 (2014).

    Article  Google Scholar 

  151. I. Sorokin and S. Taskaev, “A new concept of a vacuum insulation tandem accelerator,” Appl. Radiat. Isot. (2015) (in press, DOI: 10.1016/j.apradiso.2015.06.015).

    Google Scholar 

  152. I. N. Sorokin and S. Yu. Taskaev, RF Patent No. 2014139866 (2014).

    Google Scholar 

  153. Y. Sofue and V. Rubin, “Rotation curves of spiral galaxies,” Ann. Rev. Astron. Astrophys. 39, 137–174 (2001).

    Article  ADS  Google Scholar 

  154. R. Cabanac, D. Valls-Gabaud, A. Jaunsen, C. Lidman, and H. Jerjen, “Discovery of a high-redshift Einstein ring,” Astron. Astrophys. 436 (2), L21–L25 (2005).

    Article  ADS  Google Scholar 

  155. D. Spergel, R. Bean, O. Doré, M. Nolta, C. Bennett, J. Dunkley, G. Hinshaw, N. Jarosik, E. Komatsu, L. Page, H. Peiris, L. Verde, M. Halpern, R. Hill, A. Kogut, et al., “Wilkinson microwave anisotropy probe (WMAP) three year results: implications for cosmology,” Astrophys. J. Suppl. 170 (2), 377–408 (2007).

    Article  ADS  Google Scholar 

  156. S. Burles, K. Nollett, and M. Turner, “Big Bang nucleosynthesis predictions for precision cosmology,” Astrophys. J. 1, L1–L5 (2001).

    Article  ADS  Google Scholar 

  157. N. Spooner, “Direct dark matter searches,” J. Phys. Soc. Jpn. 76, 111016 (2007).

    Article  ADS  Google Scholar 

  158. R. Bernabei, P. Belli, A. Bussolotti, F. Cappella, R. Cerulli, C. Dai, A. d’Angelo, A. Incicchitti, H. Kuang, J. Ma, A. Mattei, F. Montecchia, F. Nozzoli, D. Prosperi, X. Sheng, and Z. Ye, “The DAMA/LIBRA apparatus,” Nucl. Instrum. Meth. A 592 (3), 297–315 (2008).

    Article  ADS  Google Scholar 

  159. J. Angle, E. Aprile, and F. Arneodo, et al. (XENON Collaboration), “First results from the XENON10 dark matter experiment at the Gran Sasso National Laboratory,” Phys. Rev. Lett. 100, 021303 (2008).

    Article  ADS  Google Scholar 

  160. M. Felizardo, T. Girald, T. Morlat, A. Fernandes, A. Ramos, and J. Marques, “Recent results from the SIMPLE dark matter search,” J. Phys.: Conf. Ser. 375, 012011 (2012).

    ADS  Google Scholar 

  161. H. Harano, T. Matsumoto, Y. Tanimura, Y. Shikaze, M. Baba, and T. Nakamura, “Monoenergetic and quasi-monoenergetic neutron reference fields in Japan,” Radiat. Meas. 45 (10), 1076–1082 (2010).

    Article  Google Scholar 

  162. V. Lacoste, “Review of radiation sources, calibration facilities and simulated workplace fields,” Radiat. Meas. 45 (10), 1083–1089 (2010).

    Article  Google Scholar 

  163. T. Matsumoto, H. Harano, J. Nishiyama, A. Uritani, and K. Kudo, “Novel generation method of 24-keV monoenergetic neutrons using accelerators,” in AIP Conf. Proc., 1099, 924–927 (2009).

    Article  ADS  Google Scholar 

  164. S. Yu. Taskaev, RF Patent No. 2515523 (2014).

    Google Scholar 

  165. A. N. Makarov and S. Yu. Taskaev, “Monoenergetic neutron beam for calibrating dark matter detectrors,” JETP Lett. 97 (12), 668–669 (2013).

    Article  ADS  Google Scholar 

  166. A. E. Bondar’, A. F. Buzulutskov, A. V. Burdakov, E. S. Grishnyaev, A. D. Dolgov, A. N. Makarov, S. V. Polosatkin, A. V. Sokolov, S. Yu. Taskaev, and L. I. Shekhtman, “Project of the systems of neutron scattering for calibration of the dark matter detectors and low-energy neutrinos,” Vestn. Novosibirsk Gosud. Universitet, Ser. Fiz. 8 (3), 27–38 (2013).

    Google Scholar 

  167. M. L.E. Oliphant and Lord M. O. Rutherford, “Experiments on the transmutation of elements by protons,” Proc. R. Soc. A (London) 141, 259–281 (1933).

    Article  ADS  Google Scholar 

  168. P. Dee and C. Gilbert, “The disintegration of boron into three a-particles,” Proc. R. Soc A (London) 154, 279–296 (1936).

    Article  ADS  Google Scholar 

  169. N. Rostoker, A. Qerushi, and M. Rinderbauer, “Colliding beam fusion reactors,” J. Fusion Energy 22, 83–92 (2004).

    Article  ADS  Google Scholar 

  170. S. Stave, M. Ahmed, R. France, III, S. Henshaw, B. Muller, B. Perdue, R. Prior, M. Spraker, and H. Weller, “Understanding the 11B(p,a)aa reaction at the 0.675 MeV resonance,” Phys. Lett. B 696, 26–29 (2011).

    Article  ADS  Google Scholar 

  171. V. Volosov, “Aneutronic fusion on the base of asymmetrical centrifugal trap,” Nucl. Fusion 46, 820–828 (2006).

    Article  ADS  Google Scholar 

  172. V. Dmitriev, “a-Particle spectrum in the reaction p + 11B → α + 8Be* → 3α,” Phys. Atom. Nucl. 72 (7), 1165–1167 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  173. H. Becker, C. Rolfs, and H. Trautvetter, “Low-energy cross sections for 11B(p,3α)*,” Z. Phys. A 327, 341–355 (1987).

    ADS  Google Scholar 

  174. J. Quebert and L. Marquez, “Effets des résonances de 12C sur l’émission de particules alpha dans la réaction 11B(p,3α),” Nucl. Phys. A 126, 646–670 (1969).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Taskaev.

Additional information

Original Russian Text © S.Yu. Taskaev, 2015, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2015, Vol. 46, No. 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taskaev, S.Y. Accelerator based epithermal neutron source. Phys. Part. Nuclei 46, 956–990 (2015). https://doi.org/10.1134/S1063779615060064

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779615060064

Keywords

Navigation