Skip to main content
Log in

Development of an Accelerator-Based Epithermal Neutron Source for Boron Neutron Capture Therapy

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The paper presents a review of the current state of development of accelerator-based epithermal neutron sources for boron neutron capture therapy (BNCT), a promising method for the treatment of malignant tumors. Special attention is paid to an epithermal neutron source based on a new type of accelerator of charged particles: a tandem accelerator with vacuum insulation and a lithium neutron-producing target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Neutron Capture Therapy. Principles and Applications, Ed. by W. Sauerwein, A. Wittig, R. Moss, and Y. Nakagawa (Springer, 2012).

    Google Scholar 

  2. S. Yu. Taskaev and V. V. Kanygin, Boron Neutron Capture Therapy (Izdatel’stvo SO RAN, Novosibirsk, 2016) [in Russian].

    Google Scholar 

  3. S. Yu. Taskaev, “Accelerator based epithermal neutron source,” Phys. Part. Nucl. 46, 956–990 (2015).

    Article  Google Scholar 

  4. T. Blue and J. Yanch, “Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors,” J. Neuro-Oncol. 62, 19–31 (2003).

  5. C. Lee and X. Zhou, “Thick target neutron yields for the 7Li(p,n)7Be reaction near threshold,” Nucl. Instrum. Methods Phys. Res., Sect. B 152, 1–11 (1999).

    Google Scholar 

  6. B. Bayanov, V. Belov, E. Bender, M. Bokhovko, G. Dimov, V. Kononov, O. Kononov, N. Kuksanov, V. Palchikov, V. Pivovarov, R. Salimov, G. Silvestrov, A. Skrinsky, and S. Taskaev, “Accelerator based neutron source for the neutron capture and fast neutron therapy at hospital,” Nucl. Instrum. Meth. Phys. Res. A 413, 397–426 (1998).

    Article  ADS  Google Scholar 

  7. L. Zaidi, E. A. Kashaeva, S. I. Lezhnin, G. N. Malyshkin, S. I. Samarin, T. V. Sycheva, S. Yu. Taskaev, and S. A. Frolov, “Neutron-beam-shaping assembly for boron neutron-capture therapy,” Phys. At. Nucl. 80, 60–66 (2017).

    Article  Google Scholar 

  8. A. Ivanov, D. Kasatov, A. Koshkarev, A. Makarov, Yu. Ostreinov, I. Shchudlo, I. Sorokin, and S. Taskaev, “Suppression of an unwanted flow of charged particles in a tandem accelerator with vacuum insulation,” JINST 11, 04 018 (2016).

    Article  Google Scholar 

  9. T. A. Bykov, D. A. Kasatov, Ya. A. Kolesnikov, A. M. Koshkarev, A. N. Makarov, Yu. M. Ostreinov, E. O. Sokolova, I. N. Sorokin, S. Yu. Taskaev, and I. M. Shchudlo, “Use of a wire scanner for measuring a negative hydrogen ion beam injected in a tandem accelerator with vacuum insulation,” Instrum. Exp. Tech. 61, 713–718 (2018).

    Article  Google Scholar 

  10. D. A. Kasatov, A. N. Makarov, S. Yu. Taskaev, and I. M. Shchudlo, “Radiation accompanying the absorption of 2 MeV protons in various materials,” Phys. At. Nucl. 78, 905–911 (2015).

    Article  Google Scholar 

  11. A. Badrutdinov, T. Bykov, S. Gromilov, Y. Higashi, D. Kasatov, I. Kolesnikov, A. Koshkarev, A. Makarov, T. Miyazawa, I. Shchudlo, E. Sokolova, H. Sugawara, and S. Taskaev, “In situ observations of blistering of a metal irradiated with 2-MeV protons,” Metals 7 558 (2017).

    Article  Google Scholar 

  12. B. Bayanov, V. Belov, and S. Taskaev, “Neutron producing target for accelerator based neutron capture therapy,” J. Phys.: Conf. Series 41, 460–465 (2006).

    ADS  Google Scholar 

  13. S. Yu. Taskaev and B. F. Bayanov, RF Patent No. 2610301 (2017).

  14. L. Zaidi, M. Belgaid, S. Taskaev, and R. Khelifi, “Beam shaping assembly design of 7Li(p,n)7Be neutron source for boron neutron capture therapy of deep-seated tumor,” Appl. Radiat. Isot. 139, 316–324 (2018).

    Article  Google Scholar 

  15. E. Sato, A. Zaboronok, T. Yamamoto, K. Nakai, S. Taskaev, O. Volkova, L. Mechetina, A. Taranin, V. Kanygin, T. Isobe, B. Mathis, and A. Matsumura, “Radiobiological response of U251MG, CHO-K1 and V79 cell lines to accelerator-based boron neutron capture therapy,” J. Radiat. Res. 59, 101–107 (2018).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the BNCT team: B.F. Bayanov, I.N. Sorokin, A.N. Makarov, D.A. Kasatov, I.M. Shchudlo, T.V. Sycheva, G.M. Ostreinov, L. Zaidi, I.A. Kolesnikov, E.O. Sokolova, A.M. Koshkarev, and T.A. Bykov for their help in the research and upgrading the accelerator-based epithermal neutron source, to A. Badrutdinov, Y. Higashi, F. Suzuki, and H. Sugawara for the successful experiment on the observation of blistering, V.V. Kanygin, A.I. Kasatova, A.I. Kichigin, L.V. Mechetina, O.Yu. Volkova, A.A. Zaboronok, E. Sato, K. Nakai, and A. Matsumura for successful experiments with cell cultures, and to N.V. Gubanova for the successful experiment with laboratory animals.

Funding

This work was supported by the Russian Science Foundation (grant no. 14-32-00006-P), the Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, and Novosibirsk State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Taskaev.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taskaev, S.Y. Development of an Accelerator-Based Epithermal Neutron Source for Boron Neutron Capture Therapy. Phys. Part. Nuclei 50, 569–575 (2019). https://doi.org/10.1134/S1063779619050228

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779619050228

Navigation