Skip to main content
Log in

Modeling type Ia supernovae and quark novae

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Compact astrophysical objects can change their structure and composition in combustion-like processes. In the case of white dwarfs, thermonuclear burning can even lead to an explosion as a Type la supernova. We give a brief account of the physical concepts of combustion and of methods to model this phenomenon in large-scale numerical simulations. As examples for application we discuss thermonuclear explosions of white dwarfs and to hypothetical “quark novae” transforming neutron stars into strange quark stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. X. Timmes and S. E. Woosley, “The conductive propagation of nuclear flames. I. Degenerate G + O and O+Ne+Mg white dwarfs,” Astrophys. J. 396, 649 (1992).

    Article  ADS  Google Scholar 

  2. B. Niebergal, R. Ouyed, and P. Jaikumar, “Numerical simulation of the hydrodynamical combustion to strange quark matter,” Phys. Rev. C 82, 062801 (2010).

    Article  Google Scholar 

  3. F. K. Röpke and W. Schmidt, “Turbulent combustion in thermonuclear supernovae,” in Interdisciplinary Aspects of Turbulence, Lecture Notes in Phys., Eds. by W. Hillebrandt and F. Kupka (Springer-Verlag, Berlin, 2009), pp. 255–289.

    Google Scholar 

  4. M. Reinecke, W. Hillebrandt, J. C. Niemeyer, R. Klein, and A. Gröbl, “A new model for deflagration fronts in reactive fluids,” Astron. Astrophys. 347, 724 (1999).

    ADS  Google Scholar 

  5. M. Herzog and F. K. Röpke, “Three-dimensional hydrodynamic simulations of the combustion of a neutron star into a quark star,” Phys. Rev. D 84, 083002 (2011).

    Article  ADS  Google Scholar 

  6. W. Schmidt, J. C. Niemeyer, W. Hill brandt, and F. K. Röpke, “A localised subgrid scale model for fluid dynamical simulations in astrophysics. II. Application to type Ia supernovae,” Astron. Astrophys., 450, 283 (2006)

    Article  ADS  Google Scholar 

  7. G. Damköhler, “Der Einfluß der Turbulenz auf die Flammengeschwindigkeit in Gasgemischen,” Z. f. Elektroch. 46, 601 (1940).

    Google Scholar 

  8. W. Hillebrandt and J. C. Niemeyer, “Type la supernova explosion models,” ARAstron. Astrophys. 38, 191 (2000).

    Article  ADS  Google Scholar 

  9. W. Hillebrandt, M. Kromer, F. K. Röpke, and A. J. Ruiter, “Towards an understanding of Type la supernovae from a synthesis of theory and observations,” Frontiers of Phys. 8, 116 (2013).

    Article  ADS  Google Scholar 

  10. A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astrophys. J. 116, 1009 (1998).

    Google Scholar 

  11. S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, et al., “Measurements of omega and lambda from 42 high-redshift supernovae,” Astrophys. J. 517, 565 (1999).

    Article  ADS  Google Scholar 

  12. K. Nomoto, F.-K. Thielemann, and K. Yokoi, “Accreting white dwarf models of Type I supernovae. III. Carbon deflagration supernovae,” Astrophys. J. 286, 644 (1984).

    Article  ADS  Google Scholar 

  13. S. A. Sim, F. K. Röpke, W. Hillebrandt, M. Kromer, R. Pakmor, et al., “Detonations in sub-Chandrasekhar-mass C+ O white dwarfs,” Astrophys. J. 714, L52 (2010).

    Article  ADS  Google Scholar 

  14. R. Pakmor, M. Kromer, F. K. Röpke, S. A. Sim, A. J. Ruiter, et al., “Sub-luminous type la supernovae from the mergers of equal-mass white dwarfs with mass ~0.9M ,” Nature 463, 61 (2010).

    Article  ADS  Google Scholar 

  15. R. Pakmor, M. Kromer, S. Taubenberger, S. A. Sim, F. K. Röpke, et al., “Normal type la supernovae from violent mergers of white dwarf binaries,” Astrophys. J. 747, L10 (2012).

    Article  ADS  Google Scholar 

  16. M. Kromer, M. Fink, V. Stanishev, S. Taubenberger, F. Ciaraldi-Schoolman, et al., “3D deflagration simulations leaving bound remnants: A model for 2002ex-like Type la supernovae,” MX RAS 429, 2287 (2013).

    ADS  Google Scholar 

  17. R. Moll, C. Raskin, D. Kasen, and S. Woosley, “Type la supernovae from merging white dwarfs I Prompt detonations,” ArXiv e-prints, 2013.

    Google Scholar 

  18. M. Fink, W. Hillebrandt, and F. K. Röpke, “Doubledetonation supernovae of sub-Chandrasekhar mass white dwarfs,” Astron. Astrophys. 476, 1133 (2007).

    Article  ADS  Google Scholar 

  19. M. Fink, F. K. Röpke, W. Hillebrandt, I. R. Seitenzahl, S. A. Sim, et al., “Double-detonation sub-Chandrasekhar supernovae: can minimum helium shell masses detonate the core?,” Astron. Astrophys. 514, A53 (2010).

    Article  ADS  Google Scholar 

  20. R. Moll and S. E. Woosley, “Multi-dimensional models for double detonation in sub-Chandrasekhar mass white dwarfs,” Astrophys. J. 774, 137 (2013).

    Article  ADS  Google Scholar 

  21. A. M. Khokhlov, “Delayed detonation model for type la supernovae,” Astron. Astrophys. 245, 114 (1991).

    ADS  Google Scholar 

  22. F. K. Röpke and J. C. Niemeyer, “Delayed detonations in full-star models of type la supernova explosions,” Astron. Astrophys. 464, 683 (2007).

    Article  ADS  Google Scholar 

  23. I. R. Seitenzahl, F. Ciaraldi-Schoolmann, F. K. Röpke, M. Fink, W. Hillebrandt, et al., “Three-dimensional delayed-detonation models with nucleosynthesis for Type la supernovae,” MNRAS 429, 1156 (2013).

    Article  ADS  Google Scholar 

  24. D. Kasen, F. K. Röpke, and S. E. Woosley, “The diversity of type la supernovae from broken symmetries,” Nature 460, 869 (2009).

    Article  ADS  Google Scholar 

  25. S. A. Sim, I. R. Seitenzahl, M. Kromer, F. CiaraldiSchoolmann, F. K. Röpke, et al., “Synthetic light curves and spectra for three-dimensional delayed-detonation models of Type la supernovae,” MNRAS 436, 333 (2013).

    Article  ADS  Google Scholar 

  26. F. K. Röpke, W. Hillebrandt, W. Schmidt, J. C. Niemeyer, S. I. Blinnikov, et al., “A three-dimensional deflagration model for type la supernovae compared with observations,” Astrophys. J. 668, 1132 (2007).

    Article  ADS  Google Scholar 

  27. G. C. Jordan IV, H. B. Perets, R. T. Fisher, and D. R. van Rossum, “Failed-detonation supernovae: subluminous low-velocity la supernovae and their kicked remnant white dwarfs with iron-rich cores,” Astrophys. J. 761, L23 (2012).

    Article  ADS  Google Scholar 

  28. C. Alcock, E. Farhi, and A. Olinto, “Strange stars,” Astrophys. J. 310, 261 (1986).

    Article  ADS  Google Scholar 

  29. J. E. Horvath and O. G. Benvenuto, “On the stability of slow neutron combustion in astrophysical objects,” Phys. Letters B 213, 516 (1988).

    Article  ADS  Google Scholar 

  30. M. L. Olesen and J. Madsen, “Burning a neutron star into a strange star,” Nucl. Phys. B Proceedings Supplements 24, 170 (1991).

    Article  ADS  Google Scholar 

  31. G. Lugones, O. G. Benvenuto and H. Vucetich, “Combustion of nuclear matter into strange matter,” Phys. Rev. D 50, 6100 (1994).

    Article  ADS  Google Scholar 

  32. A. Drago, A. Lavagno, and I. Parenti, “Burning of a hadronic star into a quark or a hybrid star,” ApJ 659, 1519 (2007).

    Article  ADS  Google Scholar 

  33. R. Ouyed, B. Niebergal, and P. Jaikumar, “Explosive combustion of a neutron star into a quark star: the non-premixed scenario,” Proceedings of the Compact Stars in the QCD Phase Diagram III Conference, December 12–15, 2012, Guaruja, Brazil, 2013.

    Google Scholar 

  34. J. M. Lattimer and F. D. Swesty, “A generalized equation of state for hot, dense matter,” Nucl. Phys. A 535, 331 (1991).

    Article  ADS  Google Scholar 

  35. H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi, “Relativistic equation of state of nuclear matter for supernova explosion,” Prog. Theor. Phys. 100, 1013 (1998).

    Article  ADS  Google Scholar 

  36. J. Cleymans, R. V. Gavai, and E. Suhonen, “Quarks and gluons at high temperatures and densities,” Phys. Rep. 130, 217 (1986).

    Article  ADS  Google Scholar 

  37. A. Marek, H. Dimmelmeier, H. Janka, E. Müller, and R. Buras, “Exploring the relativistic regime with Newtonian hydrodynamics: an improved effective gravitational potential for supernova simulations,” Astron. Astrophys. 445, 273 (2006).

    Article  ADS  Google Scholar 

  38. M. Herzog, “Hydrodynamical simulations of combustion processes at high densities in compact stars,” PhD Thesis, Technical University of Munich, 2012.

    Google Scholar 

  39. G. Pagliara, M. Herzog, and F. K. Röpke, “Combustion of a neutron star into a strange quark star: The neutrino signal,” Phys. Rev. D 87, 103007 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. K. Röpke.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Röpke, F.K. Modeling type Ia supernovae and quark novae. Phys. Part. Nuclei 46, 808–811 (2015). https://doi.org/10.1134/S1063779615050251

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779615050251

Keywords

Navigation