Skip to main content
Log in

Classical integrable systems and their field-theoretical generalizations

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Investigations of the interrelations between classical integrable systems, construction of their field theory generalizations, and some problems of quantization of Poisson manifolds are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Krichever, “Integration of Nonlinear Equations by Methods of Algebraic Geometry,” Funkts. Anal. Pril. 11(1), 15–31 (1977); I. Krichever and S. Novikov, “Vector Bundles on Algebraic Curves and Nonlinear Equations,” Usp. Mat. Nauk 35 (6), 47–68 (1980).

    MATH  Google Scholar 

  2. N. Hitchin, “Stable Bundles and Integrable Systems,” Duke Math. J. 54, 91–114 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Gorsky and N. Nekrasov, “Elliptic Calogero-Moser System from Two-Dimensional Current Algebra,” hep-th/9401021 (1994).

  4. N. Nekrasov, “Holomorphic Bundles and Many-Body Systems,” Commun. Math. Phys. 180, 587–604 (1996); hep-th/9503157 (1996).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. F. Calogero, J. Math. Phys. 12, 19 (1971); J. Moser, Adv. Math. 16, 197–220 (1975).

    Article  MathSciNet  Google Scholar 

  6. M. Olshanetsky and A. Perelomov, “Classical Integrable Finite-Dimensional Systems Related to Lie Algebras,” Phys. Rep. C 71, 313–400 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  7. A. Levin and M. Olshanetsky, “Double Coset Construction of Moduli Space of Holomorphic Bundles and Hitchin Systems,” Commun. Math. Phys. 188, 449–466 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  8. A. Levin, M. Olshanetsky, and A. Zotov, “Hitchin Systems—Symplectic Hecke Correspondence and Two-Dimensional Version,” Commun. Math. Phys 236, 93–133 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  9. V. I. Inozemtsev, “Lax Representation with Spectral Parameter on a Torus for Particle Systems,” Lett. Math. Phys. 17, 11–17 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Zotov, “Elliptic Linear Problem for Painleve/VI Equation with Spectral Parameter,” Czech. J. Phys. 53(11), 1147–1152 (2003).

    Article  MathSciNet  Google Scholar 

  11. L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons (Nauka, Moscow, 1986; Sptinger, Berlin, 1987).

    Google Scholar 

  12. V. V. Sokolov and A. B. Schabat, “Classification of Integrable Evolution Equations,” Sov. Sci. Rev. C 4, 221–280 (1984); A. V. Mikhailov, A. B. Schabat, and R. I. Yamilov, “The Symmetry Approach to Classification of Nonlinear Equations. Complete List of Integrable Systems,” Usp. Mat. Nauk 42, 3–53 (1987); A. S. Fokas, “Symmetries and Integrability,” Stud. Appl. Math. 77, 253–299 (1987).

    Google Scholar 

  13. A. A. Belavin and V. E. Zakharov, “Multidimensional Method of Inverse Problem of Scattering and Distance Equation for Yang-Mills Field,” Pis’ma Zh. Eksp. Teor. Fiz. 25, 603–607 (1977) [JETP Lett. 25, 567–570 (1977)].

    Google Scholar 

  14. A. Gorsky, S. Gukov, and A. Mironov, “Multiscale N = 2 SUSY Field Theories, Integrable Systems and Their Stringy/Brane Origin-I,II,” Nucl. Phys. B 517, 409–461 (1998); Nucl. Phys. B 518, 689–713.

    Article  MathSciNet  ADS  Google Scholar 

  15. M. Kontsevich, “Deformation Quantization of Poisson Manifolds I,” IHES Preprint, q-alg/9709040 (1997).

  16. A. Zotov, “On Relation Between Moyal and Kontsevich Quantum Products. Direct Evaluation up to the h 3-Order,” Mod. Phys. Lett. A 16, 615–626 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, To the Theory of Dispersion of Magnetic Permeability of Ferromagnetic Solids. Collection of D. Landau Works (Nauka, Moscow, 1969), Vol. 1 [in Russian].

    Google Scholar 

  18. E. Sklyanin, “On Complete Integrability of the Landau-Lifshitz Equation:,” Preprint LOMI E-3-79 (1979); A. E. Borovik and V. N. Robuk, “Linear Pseudopotentials and Conservation Laws for the Landau-Lifshitz Equation,” Theor. Math. Phys. 46, 371–381 (1981).

    Google Scholar 

  19. V. B. Mehta and C. S. Seshardi, “Module of Vector Bundles on Curves with Parabolic Structures,” Math. Annalen 248, 205–239 (1980).

    Article  Google Scholar 

  20. M. F. Atiyah, Vector Bundles Over An Elliptic Curve, Proc. London Math. Soc. 7, 414–452 (1957).

    MATH  MathSciNet  Google Scholar 

  21. D. Arinkin and S. Lysenko, “Isomorphisms Between Moduli Spaces of SL(2)-Bundles with Connections on P 1/{x 1, ..., x 4},” Math. Res. Lett. 4, 181–190 (1997).

    MathSciNet  Google Scholar 

  22. A. P. Veselon, “Integrable Maps,” Russ. Math. Surv. 46, 1–51 (1991).

    Article  Google Scholar 

  23. E. Markman, “Spectral Curves and Integrable Systems,” Comput. Math. 93, 255–290 (1994).

    MATH  MathSciNet  Google Scholar 

  24. G. Arutyunov, L. Chekhov, and S. Frolov, “Quantum Dynamical R-Matrices,” Am. Math. Soc. Trans. 191(2), (1999).

  25. Yu. B. Suris, “Elliptic Ruijsenaars-Schneider and Calogero-Moser Hierarchies are Governed by the Same R-Matrix,” solv-int/9603011 (1996).

  26. A. A. Belavin, “Dynamical Symmetry of Integrable System,” Nucl. Phys. B 180, 189–200 (1981).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. E. Billey, J. Avan, and O. Babelon, “Exact Yangian Symmetry in the Classical Euler-Calogero-Moser Model,” hep-th/9401117 (1994).

  28. V. Kuznetsov and E. Sklyanin, “On Bäcklund Transformations for Many-Body Systems,” J. Phys. A 31, 2241–2251 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  29. J. Avan, O. Babelon, and M. Talon, “Construction of the Classical R-Matrices for the Toda and Calogero Models,” hep-th/9306102 (1993).

  30. S. N. M. Ruijsenaars, “Complete Integrability of Relativistic Calogero-Moser Systems and Elliptic Function Identities,” Commun. Math. Phys. 110, 191 (1987).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. S. N. M. Ruijsenaars, “Action-Angle Maps and Scattering Theory for Some Finite-Dimensional Integrable Systems,” Commun. Math. Phys 115, 127–165 (1988); A. Gorsky, “Integrable Many-Body Problems from the Field Theories,” Theor. Math. Phys. 103, 681–700 (1995); A. Mironov, “Seiberg-Witten Theory and Duality in Integrable Systems”, hep-th/0011093 (2000).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. K. Hasegawa, “Ruijsenaars’ Commuting Difference Operators as Commuting Transfer Matrices,” g-alg/9512029 (1995).

  33. R. J. Baxter, “Eight-Vertex Model in Lattice Statistics and One-Dimensional Anisotropic Heisenberg Chain,” Ann. Phys. 76 (1973); M. Jimbo, T. Miwa, and M. Okado, “Local State Probabilities of Solvable Lattice Models: An A 1 n − 1 Family,” Nucl. Phys. B 300, 74–108 (1988); L. Faddeev and L. Takhtajan, “The Quantum Method of the Inverse Problem and the Heisenberg XYZ Model,” Usp. Mat. Nauk 345, 11–68 (1979).

  34. B. Dubrovin, V. Matveev, and S. Novikov, “Nonlinear Equations of KdV Type and Finite Gap Linear Operators and Abelian Manifolds,” Usp. Mat. Nauk 31, 187 (1976).

    MathSciNet  Google Scholar 

  35. V. I. Inozemtsev, “The Finite Toda Lattices,” Commun. Math. Phys. 121, 629–638 (1989).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. I. Krichever, “Elliptic Solutions of the Kadomtsev-Petviashvili Equation and Integrable Systems of Particles,” Funct. Anal. Appl. 14, 282–290 (1980).

    Article  Google Scholar 

  37. E. D’Hoker and D. H. Phong, “Calogero-Moser Lax Pairs with Spectral Parameter for General Lie Algebras,” Nucl. Phys. B 530, 537–610 (1997).

    Article  MathSciNet  Google Scholar 

  38. E. D’Hoker and D. H. Phong, Calogero-Moser and Toda Systems for Twisted and Untwisted Affine Lie Algebras, hep-th/9804125 (1998).

  39. S. P. Khastgir, R. Sasaki, and K. Takasaki, “Calogero-Moser Models IV: Limits to Toda Theory,” hep-th/9907102 (1999).

  40. I. Krichever, “Vector Bundles and Lax Equations on Algebraic Curves: hep-th/0108110 (2001).

  41. I. Krichever, O. Babelon, E. Billey, and M. Talon, “Spin Generalization of the Calogero-Moser System and the Matrix KP Equation,” Am. Math. Soc. Trans. 170, 83–119 (1995).

    MathSciNet  Google Scholar 

  42. A. G. Reyman and M. A. Semenov-Tyan-Shanskii, “Lie Algebras and Lax Equations with Spectral Parameter on Elliptic Curve,” Notes Sci. Seminar LOMI 150, 104–118 (1986).

    Google Scholar 

  43. B. Gambier, “Sur les Equations Différentielles du Second Order et du Premier Degré Dont L’Integral Générale à Ses Points Critiques Fixes,” Acta Math. Ann. 33, 1–55 (1910).

    Article  MathSciNet  Google Scholar 

  44. Painlevé, “Sur les équations différentielles du second ordre à points critiques fixes,” C. R. Acad. Sci. 143, 1111–1117 (1906).

    Google Scholar 

  45. Yu. I. Manin, “Sixth Painlevé Equation, Universal Elliptic Curve, and Mirror of P 2,” Am. Math. Soc. Trans. 186(2), 131–151 (1998).

    MATH  MathSciNet  Google Scholar 

  46. A. Babich and L. Bordag, “The Elliptic Form of the Sixth Painlevé Equation,” Preprint NTZ 25 (1997).

  47. R. Fuchs, “Über Lineare Homogene Differentialgleichungen Zweiterordnung mit im Endlich Gelegne Wesentlich Singulären Stellen,” Math. Ann. 63, 301–323 (1907).

    Article  MATH  MathSciNet  Google Scholar 

  48. M. Jimbo and T. Miwa, “Monodromy Preserving Deformation of Linear Ordinary Differential Equations with Rational Coefficients. II,” Physica D 2, 407–448 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  49. L. Schlesinger, “Über Eine Klasse Von Differentialsystemen Beliebiger Ordnung Mit Festen Kritischen Punkten,” J. Reine Angew. Math. 141, 96–145 (1912).

    MATH  Google Scholar 

  50. D. Korotkin, “Isomonodromic Deformations in Genus Zero and One: Algebrogeometric Solutions and Schlesinger Transformations,” math-ph/0003016 (2000); A. V. Kitaev and D. A. Korotkin, “On Solutions of the Schlesinger Equations in Terms of Θ-Functions,” Int. Math. Res. Notices, No. 17, 877–905 (1998).

  51. A. Levin and M. Olshanetsky, “Isomonodromic Deformations and Hitchin Systems,” Am. Math. Soc. Trans., No. 2, 191 (1999).

  52. I. Krichever, “Isomonodromy Equations on Algebraic Curves, Canonical Transformations and Whitham Equations,” hep-th/0112096 (2001).

  53. M. A. Olshanetsky, “Generalized Hitchin systems and Knizhnik-Zamolodchikov-Bernard Equation on Elliptic Curves,” hep-th/9510143 (1995).

  54. S. Slavyanov, “Painlevé Equations As Classical Analogues of Heun Equations,” J. Phys. A 29, 7329–7335 (1996).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  55. E. Mathieu, J. Math 13(2) (1868).

  56. E. G. C. Poole, Theory of Linear Differential Equations (Clarendon, Oxford, 1936).

    Google Scholar 

  57. B. V. Fedosov, “A Simple Geometrical Construction of Geometric Quantization,” J. Diff. Geom. 40, 213–238 (1994).

    MATH  MathSciNet  Google Scholar 

  58. M. Penkava and P. Vanhaecke, “Deformation Quantization of Polynomial Poisson Algebras,” q-alg/9804022 (1998).

  59. A. Weyl, Elliptic Functions According to Eisenstein and Kronecker (Springer, Berlin, 1976).

    Google Scholar 

  60. D. Mumford, Tata Lectures on Theta I, II (Birkhäuser, Boston, 1984; Mir, Moscow, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Zotov, 2006, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2006, Vol. 37, No. 3, pp. 759–842.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zotov, A.V. Classical integrable systems and their field-theoretical generalizations. Phys. Part. Nuclei 37, 400–443 (2006). https://doi.org/10.1134/S1063779606030063

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779606030063

PACS numbers

Navigation