Skip to main content
Log in

Formation of a Forbush Decrease in a Magnetic Cloud by the Electromagnetic Mechanism

  • ELEMENTARY PARTICLES AND FIELDS/Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

We calculate cosmic ray intensity using the model of the Forbush decrease formation in a magnetic cloud by the electromagnetic mechanism for three events. The properties of the Forbush decrease are determined by solving the Boltzmann kinetic equation without particle scattering. At the initial time, the magnetic cloud has the shape of a torus, for which geometric parameters such as velocity, velocity gradient, cross-sectional area, and angular dimensions are specified. The kinematic model determines the subsequent propagation of the cloud in interplanetary space. The magnetic field properties and the type of helical structure near the Sun are based on the Miller and Turner toroidal model. In interplanetary space, magnetic field components are determined by the frozen-in condition. The model properties of the velocity, velocity gradient, magnetic field components, and characteristics of the Forbush decrease roughly agree with measurements in three events. There are no free parameters in the Forbush decrease formation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. I. G. Richardson and H. V. Cane, Solar Phys. 270, 609 (2011).

    Article  ADS  CAS  Google Scholar 

  2. W. Krittinatham and D. Ruffolo, Astrophys. J. 704, 831 (2009).

    Article  ADS  Google Scholar 

  3. S. Benella, M. Laurenza, R. Vainio, C. Grimani, G. Consolini, Q. Hu, and A. Afanasiev, Astrophys. J. 901, 21 (2020).

    Article  ADS  CAS  Google Scholar 

  4. T. Laitinen and S. Dalla, in Proceedings of the 43rd COSPAR Scientific Assembly, Jan. 28–Feb. 4, 2021 (2021), Vol. 43, p. 866.

  5. A. S. Petukhova, I. S. Petukhov, and S. I. Petukhov, Astrophys. J. 880, 17 (2019).

    Article  ADS  CAS  Google Scholar 

  6. G. Miller and L. Turner, Phys. Fluids 24, 363 (1981).

    Article  ADS  CAS  Google Scholar 

  7. T. H. Zurbuchen and I. G. Richardson, Space Sci. Rev. 123, 31 (2006).

    Article  ADS  Google Scholar 

  8. V. Bothmer and R. Schwenn, Adv. Space Res. 17, 319 (1996).

    Article  ADS  Google Scholar 

  9. A. S. Petukhova, I. S. Petukhov, and S. I. Petukhov, Space Weather 18, e02616 (2020).

  10. A. W. Hood and E. R. Priest, Geophys. Astrophys. Fluid Dyn. 17, 297 (1981).

    Article  ADS  Google Scholar 

  11. W. D. Gonzalez, B. T. Tsurutani, and A. L. Clúa de Gonzalez, Space Sci. Rev. 88, 529 (1999).

    Article  ADS  Google Scholar 

  12. M. J. Owens, J. Geophys. Res.: Space Phys. 113, A12 (2008).

    Google Scholar 

  13. P. Hess and J. Zhang, Solar Phys. 292, 80 (2017).

    Article  ADS  Google Scholar 

  14. P. Mäkelä, N. Gopalswamy, H. Xie, A. A. Mohamed, S. Akiyama, and S. Yashiro, Solar Phys. 284, 59 (2013).

    Article  ADS  Google Scholar 

  15. C. J. Farrugia, I. G. Richardson, L. F. Burlaga, R. P. Lepping, and V. A. Osherovich, J. Geophys. Res.: Space Phys. 98, 15497 (1993).

    Article  ADS  Google Scholar 

  16. N. Dresing, R. Gómez-Herrero, B. Heber, M. A. Hidalgo, A. Klassen, M. Temmer, and A. Veronig, Astron. Astrophys. 586, A55 (2016).

    Article  ADS  Google Scholar 

  17. D. J. McComas, T. Sharma, E. R. Christian, C. M. S. Cohen, M. I. Desai, M. E. Hill, L. Y. Khoo, W. H. Matthaeus, D. G. Mitchell, F. Pecora, J. S. Rankin, N. A. Schwadron, J. R. Szalay, M. M. Shen, C. R. Braga, P. S. Mostafavi, et al., Astrophys. J. 943, 2 (2023).

    Article  Google Scholar 

  18. Q. Hu, J. Qiu, and S. Krucker, J. Geophys. Res.: Space Phys. 120, 5266 (2015).

    Article  ADS  Google Scholar 

  19. T. Nieves-Chinchilla, A. Vourlidas, J. C. Raymond, M. G. Linton, N. Al-haddad, N. P. Savani, A. Szabo, and M. A. Hidalgo, Solar Phys. 293, 25 (2018).

    Article  ADS  Google Scholar 

  20. I. A. Lagoida, V. V. Mikhailov, S. A. Voronov, and M. D. Ngobeni, Bull. Russ. Acad. Sci.: Phys. 85, 1276 (2021).

    Article  CAS  Google Scholar 

  21. A. S. Petukhova, I. S. Petukhov, S. I. Petukhov, and I. S. Gotovtsev, Solar-Terr. Phys. 9, 88 (2023).

    Google Scholar 

  22. A. S. Petukhova, I. S. Petukhov, and S. I. Petukhov, J. Phys.: Conf. Ser. 1690, 012016 (2020).

  23. S. Wang, V. Bindi, C. Consolandi, C. Corti, C. Light, N. Nikonov, and A. Kuhlman, Astrophys. J. 950, 23 (2023).

    Article  ADS  Google Scholar 

Download references

Funding

This work is supported by the RF Ministry of Science and Higher Education, and by the Siberian Branch of the Russian Academy of Sciences, project no. FWRS-2021-0012. The authors acknowledge the FD database obtained by IZMIRAN Cosmic Ray Group (http://spaceweather.izmiran.ru/eng/dbs.html), the NMDB database (www.nmdb.eu), OMNIWeb (https://omniweb.gsfc.nasa.gov/form/ dx1.html), the near-Earth interplanetary coronal mass ejection database compiled by I.G. Richardson and H.V. Cane (http://www.srl.caltech.edu/ACE/ASC/DATA/level3/icmetable2.htm) for providing the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Petukhova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petukhova, A.S., Petukhov, I.S. & Petukhov, S.I. Formation of a Forbush Decrease in a Magnetic Cloud by the Electromagnetic Mechanism. Phys. Atom. Nuclei 86, 1133–1137 (2023). https://doi.org/10.1134/S1063778824010435

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778824010435

Navigation