Skip to main content
Log in

Elastic Fields of Vacancy Voids and Their Interaction with Radiation Defects in Body Centered Cubic Metals Fe and V: Calculation Methods

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The calculation of the sink strengths of vacancy voids for radiation defects, which are the parameters of phenomenological models of radiation damage of materials, requires knowledge of the energy of interaction of the radiation defects with the elastic fields created by vacancy voids in the bulk of the material. Direct calculation of the interaction energy by molecular statics demands enormous computational resources and therefore is not suitable for sink strength calculations. In this article, we propose a computationally efficient approach to calculating the interaction energy, which does not introduce a significant error in the calculations. This approach is based on the combined use of different methods: molecular statics is used to calculate the dipole tensors of radiation defects and the elastic strain fields created by vacancy voids, while the interaction of voids with radiation defects (elastic dipoles) is calculated using anisotropic linear elasticity theory. The validity of such an approach is demonstrated by directly comparing its results with the results obtained only by the method of molecular statics, which uses as a test problem the calculation of the interaction between spherical vacancy voids with diameters of 2 and 20 lattice parameters and self-point defects for the BCC metal Fe. Elastic strain fields of the spherical vacancy voids with diameters from 2 to 20 lattice parameters in the BCC metals Fe and V are calculated by molecular statics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. S. I. Golubov, A. V. Barashev, and R. E. Stoller, in Comprehensive Nuclear Materials, 2nd ed. (Elsevier, Amsterdam, 2020), Vol. 1, p. 717. https://doi.org/10.1016/B978-0-12-803581-8.00663-9

    Book  Google Scholar 

  2. C. S. Becquart, N. Mousseau, and C. Domain, in Comprehensive Nuclear Materials, 2nd ed. (Elsevier, Amsterdam, 2020), Vol. 1, p. 754. https://doi.org/10.1016/B978-0-12-803581-8.11685-6

    Book  Google Scholar 

  3. E. Kröner, Arch. Rational Mech. Anal. 4, 273 (1959). https://doi.org/10.1007/BF00281393

    Article  ADS  Google Scholar 

  4. J. D. Eshelby, in Solid State Physics, Ed. by F. Seitz and D. Turnbull (Academic, New York, 1956), Vol. 3, p. 79. https://doi.org/10.1016/S0081-1947(08)60132-0

    Book  Google Scholar 

  5. C. Teodosiu, Elastic Models of Crystal Defects (Springer, Berlin, 1982).

    Book  MATH  Google Scholar 

  6. A. B. Sivak, V. A. Romanov, and V. M. Chernov, Crystallogr. Rep. 55, 97 (2010). https://doi.org/10.1134/S1063774510010153

    Article  ADS  Google Scholar 

  7. A. B. Sivak, V. M. Chernov, V. A. Romanov, and P. A. Sivak, J. Nucl. Mater. 417, 1067 (2011). https://doi.org/10.1016/j.jnucmat.2010.12.176

    Article  ADS  Google Scholar 

  8. A. B. Sivak and P. A. Sivak, Crystallogr. Rep. 59, 407 (2014). https://doi.org/10.1134/S1063774514030183

    Article  ADS  Google Scholar 

  9. A. B. Sivak, P. A. Sivak, V. A. Romanov, and V. M. Chernov, Inorg. Mater.: Appl. Res. 6, 105 (2015). https://doi.org/10.1134/S2075113315020161

    Article  Google Scholar 

  10. A. B. Sivak, P. A. Sivak, V. A. Romanov, and V. M. Chernov, Inorg. Mater.: Appl. Res. 6, 466 (2015). https://doi.org/10.1134/S2075113315050184

    Article  Google Scholar 

  11. A. B. Sivak, P. A. Sivak, V. A. Romanov, and V. M. Chernov, Phys. At. Nucl. 79, 1199 (2016). https://doi.org/10.1134/S1063778816070115

    Article  Google Scholar 

  12. A. B. Sivak, S. V. Korovin, P. A. Sivak, Vopr. At. Nauki Tekh., Ser. Materialoved. Nov. Mater. 3 (94), 23 (2018).

  13. G. Subramanian, D. Perez, B. P. Uberuaga, C. N. Tomé, and A. F. Voter, Phys. Rev. B 87, 144107 (2013). https://doi.org/10.1103/PhysRevB.87.144107

  14. D.   Carpentier,   T.   Jourdan,   Y.   Le   Bouar,   and  M.-C. Marinica, Acta Mater. 136, 323 (2017). https://doi.org/10.1016/j.actamat.2017.07.013

    Article  ADS  Google Scholar 

  15. A. Vattré, T. Jourdan, H. Ding, C. Marinica, and M. J. Demkowicz, Nat. Commun. 7, 10424 (2016). https://doi.org/10.1038/ncomms10424

    Article  ADS  Google Scholar 

  16. A. D. Brailsbord and R. Bullough, J. Nucl. Mater. 44, 121 (1972). https://doi.org/10.1016/0022-3115(72)90091-8

    Article  ADS  Google Scholar 

  17. H. Wiedersich, Radiat. Eff. 12, 111 (1972). https://doi.org/10.1080/00337577208231128

    Article  ADS  Google Scholar 

  18. V. A. Borodin, A. I. Ryazanov, and C. Abromeit, J. Nucl. Mater. 207, 242 (1993). https://doi.org/10.1016/0022-3115(93)90266-2

    Article  ADS  Google Scholar 

  19. J. D. Eshelby, Proc. R. Soc. London, Ser. A 241, 376 (1957). https://doi.org/10.1098/rspa.1957.0133

    Article  ADS  MathSciNet  Google Scholar 

  20. J. D. Eshelby, Proc. R. Soc. London, Ser. A 252, 561 (1959). https://doi.org/10.1098/rspa.1959.0173

    Article  ADS  MathSciNet  Google Scholar 

  21. L. Malerba, M. C. Marinica, N. Anento, C. Björkas, H. Nguyen, C. Domain, F. Djurabekova, P. Olsson, K. Nordlund, A. Serra, D. Terentyev, F. Willaime, and C. S. Becquart, J. Nucl. Mater. 406, 19 (2010). https://doi.org/10.1016/j.jnucmat.2010.05.017

    Article  ADS  Google Scholar 

  22. M. I. Mendelev, S. Han, W. Son, G. J. Ackland, and D. J. Srolovitz, Phys. Rev. B 76, 214105 (2007). https://doi.org/10.1103/PhysRevB.76.214105

  23. A. B. Sivak, V. A. Romanov, and V. M. Chernov, AIP Conf. Proc. 999, 118 (2008). https://doi.org/10.1063/1.2918098

    Article  ADS  Google Scholar 

  24. W. R. Tyson, Canad. Metall. Quart. 14, 307 (1975). https://doi.org/10.1179/000844375795049997

    Article  ADS  Google Scholar 

  25. C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley, Hoboken, 2005).

    MATH  Google Scholar 

  26. W. R. Tyson and W. A. Miller, Surf. Sci. 62, 267 (1977). https://doi.org/10.1016/0039-6028(77)90442-3

    Article  ADS  Google Scholar 

  27. R. Hill, Proc. Phys. Soc. A 65, 349 (1952). https://doi.org/10.1088/0370-1298/65/5/307

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work has been carried out using computing resources of the federal collective usage center Complex for Simulation and Data Processing for Mega-science Facilities at NRC “Kurchatov Institute”, http://ckp.nrcki.ru/.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 1934a, 09.28.2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Sivak.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Pismenov

Appendices

APPENDIX A

DEPENDENCES OF ELASTIC FIELDS CREATED BY SPHERICAL VACANCY VOIDS ON THE DISTANCE TO THEIR SURFACE IN SELECTED DIRECTIONS

Fig. A1.
figure 8

Dependence of the eigenvalues ε(1) (a, b) and ε(2) = ε(3) (c, d) of the VV elastic strain tensor on the distance to the VV surface in the 〈100〉 directions in Fe. The eigenvector corresponding to ε(1) is parallel to the particular 〈100〉 direction under consideration: () V9; () V15; () V27; () V59; () V137; () V229; () V1037; () V2277; () V3527; () V5065; () V8363.

Fig. A2.
figure 9

Dependence of the eigenvalues ε(1) (a, b) and ε(2) = ε(3) (c, d) of the VV elastic strain tensor on the distance to the VV surface in the 〈111〉 directions in Fe. The eigenvector corresponding to ε(1) is parallel to the particular direction 〈111〉 under consideration: () V9; () V15; () V27; () V59; () V137; () V229; () V1037; () V2277; () V3527; () V5065; () V8363.

Fig. A3.
figure 10

Dependence of the eigenvalues ε(1) (a, b) and ε(2) = ε(3) (c, d) of the VV elastic strain tensor on the distance to the VV surface in the 〈100〉 directions in V. The eigenvector corresponding to ε(1) is parallel to the particular direction 〈100〉 under consideration: () V9; () V15; () V27; () V59; () V137; () V229; () V1037; () V2277; () V3527; () V5065; () V8363.

Fig. A4.
figure 11

Dependence of the eigenvalues ε(1) (a, b) and ε(2) = ε(3) (c, d) of the VV elastic strain tensor on the distance to the VV surface in the 〈111〉 directions in V. The eigenvector corresponding to ε(1) is parallel to the particular direction 〈111〉 under consideration: () V9; () V15; () V27; () V59; () V137; () V229; () V1037; () V2277; () V3527; () V5065; () V8363.

APPENDIX B

ELASTIC-ISOTROPIC CONTINUUM MODEL OF A SPHERICAL VOID

The strain field created by a spherical void can be determined using the continuum models proposed by J. Eshelby [19, 20]. Let the elastic body be a ball with a radius R and volume V with a concentric spherical cavity. Let the forces normal to the surface of the cavity (the forces are directed to the center of the void) be applied uniformly to the surface such that the volume of the cavity decreases by δν (the radius of the spherical cavity thus becomes r0). In this case, an elastic strain field will arise [5]:

$$\left. \begin{gathered} {{\varepsilon }_{{rr}}} = - \frac{{2C}}{{{{r}^{3}}}}\left( {1 - \frac{{1 - 2\nu }}{{1 + \nu }}\frac{{{{r}^{3}}}}{{{{R}^{3}}}}} \right), \hfill \\ {{\varepsilon }_{{00}}} = {{\varepsilon }_{{\varphi \varphi }}} = \frac{C}{{{{r}^{3}}}}\left( {1 + 2\frac{{1 - 2\nu }}{{1 + \nu }}\frac{{{{r}^{3}}}}{{{{R}^{3}}}}} \right), \hfill \\ \operatorname{Tr} \varepsilon = 6\frac{{1 - 2\nu }}{{1 + \nu }}\frac{C}{{{{R}^{3}}}}, \hfill \\ \end{gathered} \right\}$$
(B.1)

where

$$C = \frac{{\delta \nu }}{{4\pi \left( {1 + 2\frac{{1 - 2\nu }}{{1 + \nu }}\frac{{r_{0}^{3}}}{{{{R}^{3}}}}} \right)}}.$$
(B.2)

The change in the volume of the elastic body caused by the void is as follows [5]:

$${{V}^{{\text{R}}}} = 12\pi C\frac{{1 - \nu }}{{1 + \nu }}.$$
(B.3)

Since expression (B.3) establishes a relationship between the values of VR and C, it is possible to take the value of VR as a parameter determining the elastic field of the void. Let us rewrite expression (B.1) accordingly:

$$\left. \begin{gathered} {{\varepsilon }_{{rr}}} = - \frac{{{{V}^{{\text{R}}}}}}{{6\pi {{r}^{3}}}}\frac{{1 + \nu }}{{1 - \nu }}\left( {1 - \frac{{1 - 2\nu }}{{1 + \nu }}\frac{{{{r}^{3}}}}{{{{R}^{3}}}}} \right), \hfill \\ {{\varepsilon }_{{00}}} = {{\varepsilon }_{{\varphi \varphi }}} = \frac{{{{V}^{{\text{R}}}}}}{{12\pi {{r}^{3}}}}\frac{{1 + \nu }}{{1 - \nu }}\left( {1 + 2\frac{{1 - 2\nu }}{{1 + \nu }}\frac{{{{r}^{3}}}}{{{{R}^{3}}}}} \right), \hfill \\ \operatorname{Tr} \varepsilon = \frac{{1 - 2\nu }}{{1 - \nu }}\frac{{{{V}^{{\text{R}}}}}}{{2\pi {{r}^{3}}}} = \frac{2}{3}\frac{{1 - 2\nu }}{{1 - \nu }}\frac{{{{V}^{{\text{R}}}}}}{V}. \hfill \\ \end{gathered} \right\}$$
(B.4)

Proceeding from spherical to Cartesian coordinates, we obtain for the strain tensor

$$\left. \begin{gathered} {{\varepsilon }_{{ij}}} = \frac{{{{V}^{{\text{R}}}}}}{{4\pi {{r}^{3}}}}\frac{{1 + \nu }}{{1 - \nu }}\left( {\frac{{{{\delta }_{{ij}}}}}{3} - \frac{{{{x}_{i}}{{x}_{j}}}}{{{{r}^{2}}}}} \right) + \frac{2}{9}\frac{{{{V}^{{\text{R}}}}}}{V}\frac{{1 - 2\nu }}{{1 - \nu }}{{\delta }_{{ij}}}, \hfill \\ r = \sqrt {x_{1}^{2} + x_{2}^{2} + x_{3}^{2}.} \hfill \\ \end{gathered} \right\}$$
(B.5)

As can be seen from (B.1) or (B.4), the strain tensor trace Tr ε is the same at all points of the elastic body. For the combinations of values of VR and V shown in Tables 1 and 3, Tr ε determined by (B.4) in absolute value does not exceed 4 × 10–3%; therefore, the second summand in (B.5) has little effect on the appearance of isosurfaces εij = ±0.02% shown in Figs. 1 and 2. In the calculations according to (B.5), the values of the Poisson ratio ν were assumed to be 0.30 for Fe and 0.36 for V. These values were obtained by the Vogt–Royce–Hill method [27] from the elastic constants c11 (243.4 GPa for Fe and 227.5 GPa for V), c12 (145.0 GPa for Fe and 119.3 GPa for V), and c44 (116.0 GPa for Fe and 42.0 GPa for V) corresponding to the interatomic potentials [21, 22] for Fe and V.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivak, A.B., Sivak, P.A. Elastic Fields of Vacancy Voids and Their Interaction with Radiation Defects in Body Centered Cubic Metals Fe and V: Calculation Methods. Phys. Atom. Nuclei 85, 1256–1270 (2022). https://doi.org/10.1134/S1063778822070183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778822070183

Navigation