Skip to main content
Log in

Helium-3 as a Perspective Fuel for Power Generation through Aneutronic Thermonuclear Fusion

  • MATERIALS AND TECHNOLOGIES FOR NEW POWER SOURCES
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The aneutronic D3–He (deuterium–helium-3) fuel cycle is considered as a viable alternative to D–T (deuterium–tritium) fusion since it is ecologically much safer than the latter. It is practically as safe as the aneutronic p–11B (proton–boron-11) reaction. The interest to aneutronic fuel cycles as perspective sources of thermonuclear energy is largely shown by privately-financed venture companies. The plasma-confinement techniques to be employed in planned D–3He thermonuclear reactors and their parameters are reviewed. The problem of helium-3 mining is discussed, and its terrestrial abundance is estimated. Possible applications of weakly-radioactive and aneutronic reactions and fuel cycles are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. V. I. Kukulin and V. T. Voronchev, Phys. At. Nucl. 73, 1376 (2010).

    Article  Google Scholar 

  2. V. V. Kuzenov, Phys. At. Nucl. 80, 1683 (2017); Yad. Fiz. Inzhin. 7, 342 (2016) [in Russian].

    Article  Google Scholar 

  3. V. A. Kurnaev, G. M. Vorob’ev, V. E. Nikolaeva, et al., Phys. At. Nucl. 82, 1329 (2019); Yad. Fiz. Inzhin. 10, 24 (2019) [in Russian].

    Article  Google Scholar 

  4. V. I. Khvesyuk, S. V. Ryzhkov, J. F. Santarius, et al., Fusion Technol. 39 (1T), 410 (2001).

    Article  Google Scholar 

  5. V. V. Kuzenov, A. I. Lebo, I. G. Lebo, and S. V. Ryzhkov, Physical Mathematical Models and Methods for Calculating the Impact of High-Power Laser and Plasma Pulses on Condensed and Gaseous Media (MGTU im. N. E. Baumana, Moscow, 2017) [in Russian].

  6. S. V. Ryzhkov, Fusion Sci. Technol. 51 (2T), 190 (2007).

    Article  Google Scholar 

  7. S. V. Ryzhkov, Sustainable Cities Soc. 14, 313 (2015).

    Article  Google Scholar 

  8. S. V. Ryzhkov, Fusion Sci. Technol. 47 (1T), 342 (2005).

    Article  Google Scholar 

  9. S. V. Ryzhkov and A. Yu. Chirkov, Alternative Fusion Fuels and Systems (CRC, Taylor and Francis Group, 2019; Fizmatlit, Moscow, 2017).

  10. https://tae.com.

  11. https://www.helionenergy.com.

  12. https://generalfusion.com.

  13. https://www.emc2fusion.org.

  14. https://lppfusion.com.

  15. E. A. Azizov, S. S. Anan’ev, V. A. Belyakov, et al., Phys. At. Nucl. 79, 1125 (2016).

    Article  Google Scholar 

  16. A. Yu. Chirkov, S. V. Ryzhkov, P. A. Bagryansky, and A. V. Anikeev, Fusion Sci. Technol. 59 (1T), 39 (2011).

    Article  Google Scholar 

  17. S. V. Ryzhkov, Fusion Sci. Technol. 55 (2T), 157 (2009).

    Article  Google Scholar 

  18. V. P. Timoshilov, Neftegaz. Vertikal’, No. 7 (2006);

  19. A. M. Mastepanov, V. P. Timoshilov and D. Yu. Shelekhov, Int. Gas Union World Gas Conf. Papers 6, 4465 (2009).

  20. G. L. Kulcinski et al., Fusion Technol. 21, 2292 (1992).

    Article  Google Scholar 

  21. C. G. Bathke et al., Fusion Eng. Des. 38, 59 (1997).

    Article  Google Scholar 

  22. H. H. Schmitt, Return to the Moon: Exploration, Enterprise and Energy in the Human Settlement of Space (Springer, Berlin, 2005).

    Google Scholar 

  23. V. A. Gasilov, S. V. Zakharov, and V. P. Smirnov, JETP Lett. 53, 85 (1991);

    ADS  Google Scholar 

  24. V. V. Aleksandrov, A. V. Branitski, and V. A. Gasilov, Plasma Phys. Control. Fusion 61, 035009 (2019).

    Article  ADS  Google Scholar 

  25. S. V. Ryzhkov, Bull. Russ. Acad. Sci., Phys. 78, 456 (2014).

    Google Scholar 

  26. A. Yu. Chirkov and S. V. Ryzhkov, J. Fusion Energy 31, 7 (2012).

    Article  ADS  Google Scholar 

  27. A. Asle Zaeem, H. Ghafoori Fard, A. Sadighzadeh, and M. Habibi, Plasma Phys. Rep. 44, 378 (2018).

    Article  ADS  Google Scholar 

  28. A. G. Mozgovoy, I. V. Romadanov, and S. V. Ryzhkov, Phys. Plasmas 21, 022501 (2014).

    Article  ADS  Google Scholar 

  29. S. V. Ryzhkov, A. Yu. Chirkov, and A. A. Ivanov, Fusion Sci. Technol. 63 (1T), 135 (2013).

    Article  Google Scholar 

  30. S. V. Ryzhkov, V. I. Khvesyuk, and A. A. Ivanov, Fusion Sci. Technol. 43 (1T), 304 (2003).

    Article  Google Scholar 

  31. S. V. Ryzhkov, Plasma Phys. Rep. 37, 1075 (2011); S. V. Ryzhkov, Prikl. Fiz., No. 1, 47 (2010).

  32. M. V. Koval’chuk, V. I. Il’gisonic, and V. M. Kulygin, Priroda (Moscow, Russ. Fed.), No. 12 (1228), 33 (2017); V. A. Zhil’tsov and V. M. Kulygin, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez 41, 5 (2018) [in Russian].

    Google Scholar 

  33. S. V. Ryzhkov and V. V. Kuzenov, Zeitschr. Angew. Math. Phys. 70, 46 (2019).

    Article  Google Scholar 

  34. A. V. Rudinskiy and D. A. Yagodnikov, High Temp. 57, 753 (2019).

    Article  Google Scholar 

  35. V. S. Belyaev, V. I. Vinogradov, A. P. Matafonov, et al., Phys. At. Nucl. 72, 1077 (2009).

    Article  Google Scholar 

Download references

Funding

This study was supported in part by the Russian Ministry of Science and Higher Education under government order no. 0705-2020-0044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Ryzhkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Asratyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryzhkov, S.V. Helium-3 as a Perspective Fuel for Power Generation through Aneutronic Thermonuclear Fusion. Phys. Atom. Nuclei 83, 1434–1439 (2020). https://doi.org/10.1134/S1063778820090227

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778820090227

Keywords:

Navigation