Skip to main content
Log in

Non-Equilibrium Ignition Criterion for p-11B Advanced Fuel in Magnetized Target Fusion

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

This paper investigates an analytical illustration of ignition conditions for the aneutronic reaction of proton-boron plasma in the presence of the magnetic field for fusion. In particular, the criterion for this plasma target is derived through two-temperature Lindl–Widner diagrams. Since the heating and cooling terms in the energy balance equation are affected by inequality between ions and electrons temperature combined with the impact of the magnetic field, the reduction of energy loss as well as the areal density parameter will increase the fusion rate. It will also relax the requirements of ignition conditions. Therefore, numerical derivations of ignition conditions at stagnation are performed involving the energy balance equation. The additional parameter applied other than electron and ion temperature as well as areal density is the magnetic field dependent B/ρ. It is shown that as B/ρ develops the required areal density decreases. For ions temperature of Ti < 1000 keV and electrons temperature of Te < 110 keV, the equation has real solutions for the areal density of ρR < 6 g/cm2. Furthermore, it is shown that the B/ρ parameter can be set at approximately 106 G cm3/g value. It shows the magnetic field has more effect than DT case and can reduce the driver requirements significantly. A comparison of this model with DT magnetized case shows that this model of p11B fuel is intermediate between experimental results of p11B non-magnetized and DT magnetized in the two-temperature model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. C. Kirkpatrick, High Energ. Density Phys. 6, 207–209 (2010).

    Article  ADS  Google Scholar 

  2. I. R. Lindemuth, Phys. Plasmas 24, 055602 (2017).

    Article  ADS  Google Scholar 

  3. D. Kilcrease and R. Kirkpatrick, Nucl. Fusion 28, 1465 (1988).

    Article  Google Scholar 

  4. I. R. Lindemuth and R. E. Siemon, Am. J. Phys. 77, 407–416 (2009).

    Article  ADS  Google Scholar 

  5. M. C. Hermann. M. E. Cuneo, D. B. Sinars, and S. A. Slutz, IEEE Trans. Plasma Sci. 40, 3222–3245 (2012).

    Article  ADS  Google Scholar 

  6. A. Aksenov, M. Churazov, A. Golubev, D. Koshkarev, and E. Zabrodina, Nucl. Instrum. Methods Phys. Res., Sect. A 544, 412–416 (2005).

    Google Scholar 

  7. A. B. Sefkow, S. Slutz, J. Koning, M. Marinak, K. Peterson, D. Sinars, and R. Vesey, Phys. Plasmas 21, 072711 (2014).

    Article  ADS  Google Scholar 

  8. V. V. Kuzenov, S. V. Ryzhkov, and V. V. Shumaev, “Application of Thomas–Fermi model to evaluation of thermodynamic properties of magnetized plasma,” Probl. At. Sci. Technol. 1 (95), 97–99 (2015).

    Google Scholar 

  9. A. J. Kemp, M. Basko, and J. Meyer-ter-Vehn, Nucl. Instrum. Methods Phys. Res., Sect. A 464, 192–195 (2001).

    Google Scholar 

  10. A. J. Kemp, M. Basko, and J. Meyer-ter-Vehn, Nucl. Fusion 43, 16 (2002).

    Article  ADS  Google Scholar 

  11. G. A. Wurden, S. C. Hsu, T. P. Intrator, T. C. Grabowski, J. H. Degnan, M. Domonkos, P. J. Turchi, E. M. Campbell, D. B. Sinars, M. C. Herrmann, R. Betti, B. S. Bauer, I. R. Lindemuth, R. E. Siemon, R. L. Miller, M. Laberge, and M. Delage, J. Fusion Energ. 35, 69–77 (2016).

    Article  Google Scholar 

  12. I. R. Lindemuth, Phys. Plasmas 22, 122712 (2015).

    Article  ADS  Google Scholar 

  13. R. C. Kirkpatrick, I. R. Lindemuth, and M. S. Ward, Fusion Technol. 27, 201–214 (1995).

    Article  Google Scholar 

  14. M. Laberge, J. Fusion Energ. 38, 199–203 (2019).

    Article  Google Scholar 

  15. C. Cereceda, C. Deutsch, M. de Peretti, M. Sabatier, M. Basko, A. Kemp, and J. Meyer-ter-Vehn, Phys. Plasmas 7, 4515–4533 (2000).

    Article  ADS  Google Scholar 

  16. A. J. Kemp, Ph.D. Thesis (Tech. Univ., München, 2001)

  17. K. Schoenberg and R. Siemon, Magnetized Target Fusion. A Proof-of-Principle Research Proposal (Los Alamos Natl. Lab., NM, 1998).

    Book  Google Scholar 

  18. M. Basko, Phys. Plasmas 7, 4579–4589 (2000).

    Article  ADS  Google Scholar 

  19. S. Eliezer, Z. Henis, N. Nissim, S. V. Pinhasi, and J. M. M. Val, Laser Part. Beams 33, 577–589 (2015).

    Article  ADS  Google Scholar 

  20. Z. Fan, J. Liu, B. Liu, C. Yu, and X. He, Phys. Plasmas 23, 010703 (2016).

    Article  ADS  Google Scholar 

  21. Z. Fan, X. He, J. Liu, G. Ren, B. Liu, J. Wu, L. Wang, and W. Ye, Phys. Plasmas 21, 100705 (2014).

    Article  ADS  Google Scholar 

  22. Z. Fan, Y. Liu, B. Liu, C. Yu, K. Lan, and J. Liu, Matter Radiat. Extremes 2, 3–8 (2017).

    Google Scholar 

  23. H. Hora, S. Eliezer, G. Kirchhoff, G. Korn, P. Lalousis, G. Miley, and S. Moustaizis, SPIE Proc. 10241, 1024114 (2017).

  24. S. Eliezer and J. Martinez-Val, Laser Part. Beams 16, 581–598 (1998).

    Article  ADS  Google Scholar 

  25. M. J. Hay and N. J. Fisch, Phys. Plasmas 22, 112116 (2015).

    Article  ADS  Google Scholar 

  26. J. Martinez-Val, S. Eliezer, M. Piera, and G. Velarde, Phys. Lett. A 216, 142–152 (1996).

    Article  ADS  Google Scholar 

  27. E. Ghorbanpour, A. Ghasemizad, and S. Khoshbinfar, Nucl. Sci. Tech. 30, 67 (2019).

    Article  Google Scholar 

  28. E. J. Lerner, S. K. Murali, and A. Haboub, J. Fusion Energy 30, 367–376 (2011).

    Article  ADS  Google Scholar 

  29. I. Y. Kostyukov and S. Ryzhkov, Plasma Phys. Rep. 37, 1092–1098 (2011).

    Article  ADS  Google Scholar 

  30. J. Dawson, “Advanced fusion reactors,” in Fusion, Ed. by E. Teller (Academic, New York, 1981), Vol. 1, Part B.

  31. S. E. Bodner, Phys. Rev. Lett. 33, 761 (1974).

    Article  ADS  Google Scholar 

  32. R. E. Kidder, “The theory of homogeneous isentropic compression and its application to laser fusion,” in Laser Interaction and Related Plasma Phenomena, Ed. by H. J. Schwarz (Springer, Boston, 1974).

    Google Scholar 

  33. J. Meyer-ter-Vehn, Nucl. Fusion 22, 561 (1982).

    Article  Google Scholar 

  34. M. Kundu, J. Phys.: Conf. Ser., 012068 (2016).

  35. V. V. Kuzenov and S. V. Ryzhkov, Phys. Plasmas 26, 092704 (2019).

    Article  ADS  Google Scholar 

  36. V. V Kuzenov and S. V. Ryzhkov, Phys. At. Nucl. 82, 1621–1626 (2019).

    Article  Google Scholar 

  37. A. Y. Chirkov and S. V. Ryzhkov, J. Fusion Energ. 31, 7–12 (2012).

    Article  ADS  Google Scholar 

  38. S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford Univ. Press, New York, 2004).

    Book  Google Scholar 

  39. H. Hora, S. Eliezer, N. Nissim, and P. Lalousis, Matter Radiat. Extremes 2, 177 (2018).

    Google Scholar 

  40. B. Levush and S. Cuperman, Nucl. Fusion 22, 1519 (1982).

    Article  Google Scholar 

  41. S. I. Braginskii, “Transport processes in plasma,” in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 205.

    Google Scholar 

  42. L. Spitzer, Physics of Fully Ionized Gases (Courier Corporation, 2006).

    MATH  Google Scholar 

  43. M. Basko and A. Kemp, and J. Meyer-ter-Vehn, Nucl. Fusion 40, 59 (2000).

    Article  ADS  Google Scholar 

  44. R. D. Petrasso and C. Li, Phys, Rev. Lett. 70, 3059 (1993)

    Article  ADS  Google Scholar 

  45. A. A. Harms, in Principles of Fusion Energy (Allied Publ., 2002).

    Google Scholar 

  46. P. T. León, S. Eliezer, and J. M. Martínez-Val, Phys. Lett. A 343, 181–189 (2005).

    Article  ADS  Google Scholar 

  47. A. Kemp, M. Basko, and J. Meyer-ter-Vehn, Nucl. Fusion 41, 235 (2001).

    Article  ADS  Google Scholar 

  48. S. Eliezer, J. Martinez-Val, Z. Henis, N. Nissim, S. Pinhasi, A. Ravid, M. Werdiger, and E. Raicher, High Power Laser Sci. Eng., 4 (2016).

  49. M. Basko, Association EURATOM-CEA (1998).

  50. S. Moustaizis, P. Lalousis, H. Hora, J. Larour, P. Auvray, P. Balcou, J.-E. Ducret, and P. Martin, SPIE Proc. 9515, 95151E (2015).

  51. J. L. Manganaro, J. Fusion Energy 22, 67–77 (2003).

    Article  ADS  Google Scholar 

  52. D. C. Moreau, Nucl. Fusion 17, 13 (1977).

    Article  ADS  Google Scholar 

  53. V. V. Kuzenov, S. V. Ryzhkov, and A. Starostin, Nonlin. Dyn. 16, 325–341 (2020).

    Google Scholar 

  54. M. Mahdavi and A. Gholami, Fusion Eng. Des. 142, 33–39 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Ghasemizad.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmat Ghorbanpour, Ghasemizad, A. & Khoshbinfar, S. Non-Equilibrium Ignition Criterion for p-11B Advanced Fuel in Magnetized Target Fusion. Phys. Part. Nuclei Lett. 17, 809–820 (2020). https://doi.org/10.1134/S1547477120060126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477120060126

Keywords:

Navigation