Skip to main content

Characteristics of Tritium

  • Chapter
  • First Online:
Tritium: Fuel of Fusion Reactors

Abstract

For any energy sources, fuel is a concern. In a DT fusion reactor, deuterium (D) and tritium (T) are fuels. Since hydrogen in natural water contains 0.016 % D, we can extract it from the water mostly by means of electrolysis. T, a radioactive hydrogen isotope decaying to 3He by emission of a β-electron and an antineutrino (ύ) with a half-life of 12.323 year, is generated by cosmic rays and also by nuclear reactions (atomic bombs and nuclear reactors) after the Second World War. Because of its short lifetime, natural abundance of T is very small. Therefore T, as a fuel of the D-T fusion, must be artificially produced. Although handling and processing of hydrogen is well established in industrial scales, owing to its radioactivity , special care is required for safety in handling T. In this chapter, characteristics of T as a radio isotope of hydrogen are introduced, focusing important properties of T as the fuel of a fusion reactor. Particular focuses are given to handling of large amount of radioactive T, behavior of T in burning plasma , and T breeding in blanket to attain fuel self-sufficiency, all of which we have never experienced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://en.wikipedia.org/wiki/Isotopes_of_hydrogen

  2. http://en.wikipedia.org/wiki/Hydrogen and references therein

  3. P.C. Souers, Hydrogen Properties for Fusion Energy (University of California Press, California, 1986)

    Google Scholar 

  4. R.P. Gangloff, B.P. Somerday (ed.), Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, The Problem, its Characterization and Effects on Particular Alloy Classes (Woodhead Publishing, Sawston, 2012). ISBN: 978-1-84569-677-1

    Google Scholar 

  5. C.H. Skinner, G.A. Gentile, L. Ciebiera, S. Langish, Fusion Sci. Technol. 45, 11–14 (2004)

    Google Scholar 

  6. T. Tanabe, Tritium handling issues in fusion reactor materials. J. Nucl. Mater. 417, 545–550 (2011)

    Article  Google Scholar 

  7. S. Tosti, N. Ghirelli, Tritium in Fusion—Production, Uses and Environmental Impact (Nova Publishers, NY, 2013)

    Google Scholar 

  8. T.B. Cochran, W.M. Arkin, R.S. Norris, M.H. Hoenig, Nuclear Weapon Data Book, vol. II, US Warhead Production (Ballinger Publishing Co., Pensacola, 1987)

    Google Scholar 

  9. M.E. Sawan, M.A. Abdou, Fusion Eng. Des. 81, 1131–1141 (2006)

    Article  Google Scholar 

  10. A. Pospieszczyk, S. Brezinsek, A. Meigs, G. Sergienko, M. Stamp, JET-EFDA contributors, 32nd EPS Conference on Plasma Phys. Tarragona, 27 June–1 July 2005 ECA vol. 29C, P-2.011 (2005)

    Google Scholar 

  11. S. Brezinsek, P.T. Greenland, Ph Mertens, A. Pospieszczyk, U. Samm, B. Schweer, G. Sergienko, Formation of HD molecules in the boundary layer of TEXTOR. Phys. Sci. T103, 63–67 (2003)

    Article  Google Scholar 

  12. R.J. Roberts, J.G. Dauntourna, J. Low Temp. Phys. 6, 97–129 (1972)

    Article  Google Scholar 

  13. T. Tanabe, Fusion Eng. Des. 87, 722–727 (2012)

    Article  Google Scholar 

  14. T. Tanabe, J. Nucl. Mater. 417, 545–550 (2011)

    Article  Google Scholar 

  15. T. Otsuka, T. Tanabe, Fusion Eng. Des. 85, 1437–1441 (2010)

    Article  Google Scholar 

  16. M. Oyaidzu, K. Isobe, T. Hayashi, T. Yamanishi, Effect of tritiated water on corrosion behavior of SUS304. Fusion Sci. Technol. 60, 1515–1518 (2011)

    Google Scholar 

  17. C.H. Skinner, Tritium Retention and Removal in Tokamaks, in: Proceedings of 2nd ITER International Summer School: Confinement, ed. by S.-I. Itoh, S. Inagaki, M. Shindo, M. Yagi (American Institute of Physics, 2009), pp. 127–145

    Google Scholar 

  18. J. Miyazawa, S. Masuzaki, H. Yamad et al., J. Nucl. Mater. 313–316, 534–538 (2003)

    Article  Google Scholar 

  19. M.E. Sawan, M.A. Abdou, Plasma Fusion Eng. Des. 81, 1131–1144 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Tanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Tanabe, T. (2017). Characteristics of Tritium. In: Tanabe, T. (eds) Tritium: Fuel of Fusion Reactors . Springer, Tokyo. https://doi.org/10.1007/978-4-431-56460-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56460-7_2

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56458-4

  • Online ISBN: 978-4-431-56460-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics