Skip to main content
Log in

Internal bremsstrahlung of strongly interacting charged particles

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A universal theoretical model intended for calculating internal-bremsstrahlung spectra is proposed. In this model, which can be applied to describing nuclear decays of various type (such as alpha decay, cluster decay, and proton emission), use is made of realistic nucleus–nucleus potentials. Theoretical internal-bremsstrahlung spectra were obtained for the alpha decay of the 214Po nucleus, as well as for the decay of the 222Ra nucleus via the emission of a 14C cluster and for the decay of the 113Cs nucleus via proton emission, and the properties of these spectra were studied. The contributions of various regions (internal, subbarrier, and external) to the internal-bremsstrahlung amplitude were analyzed in detail. It is shown that the contribution of the internal region to the amplitude for internal bremsstrahlung generated in nuclear decay via proton emission is quite large, but that this is not so for alpha decay and decay via cluster emission. Thus, a process in which strong interaction of nuclear particles affects the internal-bremsstrahlung spectrum if found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Sauter, Ann. Phys. (Leipzig) 20, 404 (1934).

    Article  ADS  Google Scholar 

  2. W. Heitler, The Quantum Theory of Radiation, 3rd ed., Dover Books on Physics (Dover, New York, 2010).

    MATH  Google Scholar 

  3. M. Ya. Amus’ya, V. M. Buimistrov, B. A. Zon, et al., Polarization Bremsstrahlung of Atoms and Particles (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  4. M. Ya. Amus’ya, I. S. Gul’karov, M. B. Zhalov, and T. M. Potapova, Sov. J. Nucl. Phys. 40, 839 (1984).

    Google Scholar 

  5. D. F. Hubbard and M. E. Rose, Nucl. Phys. 84, 337 (1966).

    Article  Google Scholar 

  6. M. Ya. Amus’ya, M. Yu. Kuchiev, and A. V. Soloviev, Sov. Phys. JETP 62, 876 (1985).

    Google Scholar 

  7. E. M. Nyman, Phys. Lett. B 136, 143 (1984).

    Article  ADS  Google Scholar 

  8. P. A. Golovinski and B. A. Zon, Sov. Tech. Phys. 25, 1076 (1980).

    Google Scholar 

  9. D. N. Jacubassa and M. Kleber, Z. Phys. A 273, 29 (1975).

    Article  ADS  Google Scholar 

  10. V. G. Soloviev, JETP 2, 159 (1956).

    Google Scholar 

  11. B. Persson and S. A. E. Johanson, Nucl. Phys. 12, 432 (1959).

    Article  Google Scholar 

  12. R. Vinh-Mau, Ann. Phys. (Paris) 6, 1493 (1961).

    Google Scholar 

  13. H. A. Weidenmüller, Rev. Mod. Phys. 33, 574 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  14. I. S. Batkin and Yu. G. Smirnov, Sov. J. Part. Nucl. 11, 564 (1980).

    Google Scholar 

  15. I. S. Batkin, I. V. Kopytin, and T. A. Churakova, Sov. J. Nucl. Phys. 44, 946 (1986).

    Google Scholar 

  16. A. D’Arrigo, N. V. Eremin, G. Fazio, et al., Phys. Lett. B 332, 25 (1994).

    Article  ADS  Google Scholar 

  17. N. V. Eremin et al., Phys. Rev. Lett. 85, 3061 (2000).

    Article  ADS  Google Scholar 

  18. J. Kasagi, H. Yamazaki, N. Kasajima, et al., Phys. Rev. Lett. 79, 371 (1997).

    Article  ADS  Google Scholar 

  19. J. Kasagi, H. Yamazaki, N. Kasajima, et al., J. Phys. G 23, 1451 (1997).

    Article  ADS  Google Scholar 

  20. H. Boie, H. Scheit, U. D. Jentschura, et al., Phys. Rev. Lett. 99, 022505 (2007).

    Article  ADS  Google Scholar 

  21. G. Giardina, G. Fazio, G. Mandaglio, et al., Eur. Phys. J. A 36, 31 (2008).

    Article  ADS  Google Scholar 

  22. E. V. Tkalya, JETP 89, 208 (1999).

    Article  ADS  Google Scholar 

  23. E. Tkalya, Phys. Rev. C 60, 1054612 (1999).

    Article  ADS  Google Scholar 

  24. S. D. Kurgalin, Yu. M. Tchuvil’sky, and T. A. Churakova, Vestn. Voronezh. Univ., Ser. Fiz., Mat., No. 1, 42 (2001).

    Google Scholar 

  25. S. D. Kurgalin, Yu. M. Tchuvil’sky, and T. A. Churakova, Bull. Russ. Acad. Sci.: Phys. 65, 715 (2001).

    Google Scholar 

  26. S. D. Kurgalin, Yu. M. Tchuvil’sky, and T. A. Churakova, Vestn. Voronezh. Univ., Ser. Fiz., Mat., No. 1, 27 (2004).

    Google Scholar 

  27. S. D. Kurgalin, Yu. M. Tchuvil’sky, and T. A. Churakova, Bull. Russ. Acad. Sci.: Phys. 68, 1180 (2004).

    Google Scholar 

  28. S. P. Maydanyuk and V. Olkhovsky, Prog. Theor. Phys. 109, 203 (2003).

    Article  ADS  Google Scholar 

  29. S. P. Maydanyuk and V. S. Olkhovsky, Eur. Phys. J. A 28, 283 (2006).

    Article  ADS  Google Scholar 

  30. K. Harada, Prog. Theor. Phys. 26, 667 (1961).

    Article  ADS  Google Scholar 

  31. V. G. Soloviev, Phys. Lett. 1, 202 (1962).

    Article  ADS  Google Scholar 

  32. T. Fliessbach, Z. Phys. A 272, 39 (1975).

    Article  ADS  Google Scholar 

  33. T. Fliessbach and H. J. Mang, Nucl. Phys. A 263, 75 (1976).

    Article  ADS  Google Scholar 

  34. I. Tonozuka and A. Arima, Nucl. Phys. A 323, 45 (1979).

    Article  ADS  Google Scholar 

  35. S. G. Kadmensky and W. I. Furman, Alpha Decay and Related Nuclear Reactions (Energoatomizdat, Moscow, 1985) [in Russian].

    Google Scholar 

  36. R. G. Lovas, R. J. Liotta, A. Insolia, et al., Phys. Rep. 294, 265 (1998).

    Article  ADS  Google Scholar 

  37. S. G. Kadmensky, S. D. Kurgalin, and Yu. M. Tchuvil’sky, Phys. Part. Nucl. 38, 699 (2007).

    Article  Google Scholar 

  38. A. Volya and Yu. M. Tchuvil’sky, Phys. Rev. C 91, 044319 (2015).

    Article  ADS  Google Scholar 

  39. R. Id Betan and W. Nazarewicz, Phys. Rev. C 86, 034338 (2012).

    Article  ADS  Google Scholar 

  40. T. Papenbrock and G. F. Bertsch, Phys. Rev. Lett. 80, 4141 (1998).

    Article  ADS  Google Scholar 

  41. N. Takigawa, Y. Nozawa, K. Hagino, et al., Phys. Rev. C 59, R593 (1999).

    Article  ADS  Google Scholar 

  42. C. A. Bertulani, D. T. de Paula, and V. G. Zelevinsky, Phys. Rev. C 60, 031602 (1999).

    Article  ADS  Google Scholar 

  43. M. I. Diakonov, Phys. Rev. C 60, 037602 (1999).

    Article  ADS  Google Scholar 

  44. M. I. Diakonov and I. V. Gornyi, Phys. Rev. Lett. 76, 3542 (1996).

    Article  ADS  Google Scholar 

  45. S. Mišicu, M. Rizea, and W. Greiner, J. Phys. G 27, 993 (2001).

    Article  ADS  Google Scholar 

  46. A. S. Davydov, Theory of the Atomic Nucleus (Fizmatgiz, Moscow, 1958) [in Russian].

    Google Scholar 

  47. L. McFadden and G. R. Satchler, Nucl. Phys. 84, 177 (1966).

    Article  Google Scholar 

  48. O. Bohr and B. Mottelson, Nuclear Structure, vol. 1: Single-ParticleMotion (Benjamin, New York, 1969).

    Google Scholar 

  49. F. A. Gareev, S. P. Ivanova, and B. N. Kalinkin, Izv. Akad. Nauk SSSR, Ser. Fiz. 32, 1690 (1968).

    Google Scholar 

  50. S. G. Kadmenskiĭ, V. I. Furman, and Yu. M. Tchuvil’sky, Bull. Acad. Sci. USSR, Phys. Ser. 50, 1686 (1986).

    Google Scholar 

  51. Yu. S. Zamyatnin, V. L. Mikheev, S. P. Tret’yakova, et al., Sov. J. Part. Nucl. 21, 231 (1990).

    Google Scholar 

  52. S. G. Kadmenskiĭ, S. D. Kurgalin, V. I. Furman, and Yu. M. Tchuvil’sky, Sov. J. Nucl. Phys. 51, 32 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Tchuvil’sky.

Additional information

Original Russian Text © S.D. Kurgalin, Yu.M. Tchuvil’sky, T.A. Churakova, 2016, published in Yadernaya Fizika, 2016, Vol. 79, No. 6, pp. 635–642.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurgalin, S.D., Tchuvil’sky, Y.M. & Churakova, T.A. Internal bremsstrahlung of strongly interacting charged particles. Phys. Atom. Nuclei 79, 943–950 (2016). https://doi.org/10.1134/S1063778816060144

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778816060144

Navigation