Skip to main content
Log in

Probabilities of Bremsstrahlung Emission of Photons at Low-Energy Electron-Nuclear Collisions in a Magnetic Field

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We consider quantum-mechanical probabilities of bremsstrahlung of photons in the case of low-energy Coulomb collisions in a magnetic field, where the scattering center so perturbs the state of the incident electron that the motion of the latter becomes quasi-bound. Quantum formulas for the spectral power of bremsstrahlung radiation are obtained from the classical formulas by replacing the Fourier amplitudes of the particle velocity with matrix elements of the velocity operator for wave functions, which are normalized by the condition of a unit flux being incident on the nucleus (or an equivalent outgoing flux), with summation over finite Landau levels and quantized values of the impact parameter. Equivalent forms of the specified matrix elements, which are expressed in terms of the Coulomb field and annihilation/creation operators for the eigenfunctions of the operator of the squared impact parameter, are presented. The obtained presentations for the spectral power of bremsstrahlung radiation in the case of quasi-bound electron motion allow one to translate the results of calculating this value in the classical limit to the quantum case, which is typical of white dwarfs with the strongest magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Friedrich and D. Wintgen, Phys. Rep., 183, 37 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  2. D. T. Wickramasinghe and L. Ferrario, Publ. Astron. Soc. Pacific, 112, 873 (2000).

    Article  ADS  Google Scholar 

  3. L. Ferrario, D. de Martino, and B.T. Gänsicke, Space Sci. Rev., 191, 111 (2015).

    Article  ADS  Google Scholar 

  4. V. V. Zheleznyakov, Radiation in Astrophysical Plasma [in Russian], Janus-K, Moscow (1997).

    Google Scholar 

  5. V. V. Zheleznyakov, S. A. Koryagin, and A.V. Serber, Astron. Lett., 25, 437 (1999).

    ADS  Google Scholar 

  6. S.C. West, Astrophys. J., 345, 511 (1989).

    Article  ADS  Google Scholar 

  7. D. Delande, A. Bommier, J.C. Gay, Phys. Rev. Lett., 66, 141 (1991).

    Article  ADS  Google Scholar 

  8. N. Merani, J. Main, and G. Wunner, Astron. Astrophys., 298, 193 (1995).

    ADS  Google Scholar 

  9. A. Y. Potekhin, G.G. Pavlov, and J. Ventura, Astron. Astrophys., 317, 618 (1997).

    ADS  Google Scholar 

  10. L. B. Zhao and P.C. Stancil, Phys. Rev. C, 74, No. 5, 055401 (2006).

    Article  ADS  Google Scholar 

  11. L. B. Zhao and P.C. Stancil, Astrophys. J., 667, 1119 (2007).

    Article  ADS  Google Scholar 

  12. O.Chuluunbaatar, A.A. Gusev, V. L. Derbov, et al., J. Phys. A, 40, 11485 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  13. O. Chuluunbaatar, A.A. Gusev, S. I. Vinitsky, et al., Phys. Rev. C, 77, No. 3, 034702 (2008).

    Article  ADS  Google Scholar 

  14. L.D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Pergamon, Oxford (1991).

    MATH  Google Scholar 

  15. S. A. Koryagin, Radiophys. Quantum Electron., 51, 462 (2008).

    Article  ADS  Google Scholar 

  16. S. A. Koryagin, Radiophys. Quantum Electron., 51, 616 (2008).

    Article  ADS  Google Scholar 

  17. S. Chandrasekhar and F.H. Breen, Astrophys. J., 104, 430 (1946).

    Article  ADS  Google Scholar 

  18. O.-A. Al-Hujaj and P. Schmelcher, Phys. Rev. C, 61, No. 6, 063413 (2000).

    Article  Google Scholar 

  19. V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas, Pergamon Press, Oxford (1970).

    Google Scholar 

  20. I. I. Bubukina and S.A. Koryagin, J. Exp. Theor. Phys., 108, 917 (2009).

    Article  ADS  Google Scholar 

  21. S. A. Koryagin, Radiophys. Quantum Electron., 56, 664 (2014).

    Article  ADS  Google Scholar 

  22. S. A. Arsenyev and S.A. Koryagin, Radiophys. Quantum Electron., 53, 650 (2010).

    Article  ADS  Google Scholar 

  23. G.G. Pavlov and I.A. Shibanov, Sov. Astron., 22, 214 (1978).

    ADS  Google Scholar 

  24. G. G. Pavlov and A.N. Panov, J. Exp. Theor. Phys., 44, 300 (1976).

    ADS  Google Scholar 

  25. M.H. Johnson and B.A. Lippmann, Phys. Rev., 76, 828 (1949).

    Article  ADS  Google Scholar 

  26. L. Landau, Z. Phys., 64, 629 (1930).

    Article  ADS  Google Scholar 

  27. A. Messiah, Quantum Mechanics, Dover Publ., New York (2014).

    MATH  Google Scholar 

  28. A. A. Sokolov and I. M. Ternov, Radiation from Relativistic Electrons, Amer. Inst. Phys., New York (1986).

    Google Scholar 

  29. M. Abramowitz and I. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (1972).

  30. A. Sommerfeld, Atombau und Spektrallinien, Bd. 2, Friedr. Vieweg. Sohn., Braunschweig (1951).

  31. V. B. Berestetskii, L. P. Pitaevskii, and E.M. Lifshitz, Quantum Electrodynamics, Butterworth-Heinemann, Oxford (2008).

    Google Scholar 

  32. L. A. Weinstein, Electromagnetic Waves, Radio i Svyaz’, Moscow (1988).

    Google Scholar 

  33. G. Bekefi, Radiation Processes in Plasmas, Wiley, New York (1966).

    Google Scholar 

  34. S. A. Arsenyev and S.A. Koryagin, J. Exp. Theor. Phys., 114, 913 (2012).

    Article  ADS  Google Scholar 

  35. L.P. Gor’kov and I.E. Dzyaloshinskii, Sov. Phys. JETP, 26, 449 (1968).

    ADS  Google Scholar 

  36. P. Schmelcher and L. S. Cederbaum, Phys. Rev. A, 43, 287 (1991).

    Article  ADS  Google Scholar 

  37. A. Y. Potekhin, J. Phys. B, 27, 1073 (1994).

    Article  ADS  Google Scholar 

  38. A. Y. Potekhin and D. Lai, Mon. Not. Roy. Astron. Soc., 376, 793 (2007).

    Article  ADS  Google Scholar 

  39. A. Y. Potekhin, Astron. Astrophys., 518, A24 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Koryagin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 60, No. 3, pp. 191–207, March 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koryagin, S.A., Balandin, I.A. Probabilities of Bremsstrahlung Emission of Photons at Low-Energy Electron-Nuclear Collisions in a Magnetic Field. Radiophys Quantum El 60, 171–185 (2017). https://doi.org/10.1007/s11141-017-9788-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-017-9788-9

Navigation