Skip to main content
Log in

Critical assessment of mean field models based on effective interactions

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Mean field schemes, from simple Hartree—Fock plus random phase approximation calculations of the ground and excited states to more sophisticated approaches which include pairing as well, have been popular for quite a long time. In these models, the input is an effective interaction. We still lack a precise link between this interaction and a more fundamental theory; however, there have been various new recent attempts to correlate empirical pieces of evidence about nuclear (and neutron) matter, or experimental results, with the properties of the effective interactions. In this contribution, we claim that, while we have indeed made some progress in our understanding of certain features of the interactions, we are still missing a clue about its proper density dependence and about its isovector properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972).

    Article  ADS  Google Scholar 

  2. E. Chabanat, P. Bonche, P. Haensel, et al., Nucl. Phys. A 635, 231 (1998); 643, 441(E) (1998).

    Article  ADS  Google Scholar 

  3. S. Goriely, M. Samyn, J. M. Pearson, and M. Onsi, Nucl. Phys. A 750, 425 (2005).

    Article  ADS  Google Scholar 

  4. J. Dobaczewski, W. Nazarewicz, T. R. Werner, et al., Phys. Rev. C 53, 2809 (1996).

    Article  ADS  Google Scholar 

  5. S. Peru, J. F. Berger, and P. F. Bortignon, Eur. Phys. J. A 26, 25 (2005).

    Article  ADS  Google Scholar 

  6. D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring, Phys. Rep. 409, 101 (2005).

    Article  ADS  Google Scholar 

  7. M. Bender, P.-H. Heenen, and P. G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).

    Article  ADS  Google Scholar 

  8. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964); W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133(1965).

    Article  ADS  Google Scholar 

  9. G. Colo, N. Van Giai, J. Meyer, et al., Phys. Rev. C 70, 024307 (2004).

  10. B. A. Brown, Phys. Rev. Lett. 85, 5296 (2000); R. J. Furnstahl, Nucl. Phys. A 706, 85 (2002).

    Article  ADS  Google Scholar 

  11. B. Cochet, K. Bennaceur, P. Bonche, et al., Nucl. Phys. A 731, 34 (2004); S. Yoshida and H. Sagawa, Phys. At. Nucl. 70 (8), 1357 (2007).

    Article  ADS  Google Scholar 

  12. S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and D. Zawischa, Nucl. Phys. A 676, 49 (2000), and references therein.

    Article  ADS  Google Scholar 

  13. G. Colo, P. F. Bortignon, S. Fracasso, and N. Van Giai, Nucl. Phys. A 788, 173c (2007).

    Article  ADS  Google Scholar 

  14. S. Fracasso and G. Colò, Phys. Rev. C 72, 064310 (2005).

  15. S. Fracasso and G. Colo, Phys. At. Nucl. 70(8), 1415 (2007).

    Google Scholar 

  16. J. Terasaki, J. Engel, M. Bender, et al., Phys. Rev. C 71, 034310 (2005); T. Sil, S. Shlomo, B. K. Agrawal, and P.-G. Reinhard, Phys. Rev. C 73, 034316 (2006).

  17. G. Colo, N. Van Giai, Yad. Fiz. 67, 1759 (2004) [Phys. At. Nucl. 67, 1731 (2004)].

    Google Scholar 

  18. D. H. Youngblood, Y.-W. Lui, H. L. Clark, et al., Phys. Rev. C 69, 034315 (2004).

    Google Scholar 

  19. J. P. Blaizot, Phys. Rep. 64, 171 (1980); J. P. Blaizot, J. F Berger, J. Dechargè, and M. Girod, Nucl. Phys. A 591, 435 (1995).

    Article  ADS  Google Scholar 

  20. G. Colò and N. Van Giai, Nucl. Phys. A 731, 15 (2004).

    Article  ADS  Google Scholar 

  21. D. Vretenar, T. Nikšić, and P. Ring, Phys. Rev. C 68, 024310 (2003).

    Google Scholar 

  22. B. K. Agrawal, S. Shlomo, and V K. Au, Phys. Rev. C 68, 031304 (2003).

    Google Scholar 

  23. J. Piekarewicz, Phys. Rev. C 66, 034305 (2002).

    Google Scholar 

  24. G. Colo, N. Van Giai, and H. Sagawa, Phys. Lett. B 363, 5 (1995).

    Article  ADS  Google Scholar 

  25. D. Sarchi, P. F Bortignon, and G. Colo, Phys. Lett. B 601, 27 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Colò.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colò, G. Critical assessment of mean field models based on effective interactions. Phys. Atom. Nuclei 70, 1344–1349 (2007). https://doi.org/10.1134/S1063778807080042

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778807080042

PACS numbers

Navigation