Skip to main content
Log in

Gravitational Field Effects Produced by Topologically Non-Trivial Geometry and Rotating Frames Subject to a Coulomb-Type Scalar Potential

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

>Abstract

In this paper, the effects of the gravitational field produced by a topologically non-trivial geometry in a rotating frame of reference under the influence of quantum flux with a Coulomb-type scalar potential is investigated. We solve the Klein–Gordon equation and determine the eigenvalue solution analytically. Afterwards, we analyze a spin-zero relativistic quantum oscillator model described by the KG-oscillator and determines the eigenvalue solutions. We show that the eigenvalue solutions in both case gets modified by the non-trivial topology, non-inertial reference frame, and the scalar potential. Furthermore, the energy levels shifts due to the presence of the magnetic flux which gives us an analogue of the Aharonov–Bohm effect for the bound-state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A. Einstein, Relativity: The Special and General Theory (Pi Press, New York, 2005).

    MATH  Google Scholar 

  2. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Pergamon, Oxford, 1975).

  3. C. Mtsller, The Theory of Relativity (Oxford Univ. Press, Oxford, 1972).

    Google Scholar 

  4. W. Rindler, Relativity: Special, General, and Cosmological (Oxford Univ. Press, Oxford, 2006).

    MATH  Google Scholar 

  5. J. R. Letaw and J. D. Pfautsch, Phys. Rev. D 22, 1345 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  6. F. W. Hehl and W.-T. Ni, Phys. Rev. D 42, 2045 (1990).

    Article  ADS  Google Scholar 

  7. K. Bakke and C. Furtado, Phys. Rev. D 80, 024033 (2009).

  8. K. Konno and R. Takahashi, Phys. Rev. D 85, 061502(R) (2012).

  9. K. Bakke, Eur. Phys. J. Plus 127, 82 (2012).

    Article  ADS  Google Scholar 

  10. K. Bakke, Gen. Relativ. Grav. 45, 1847 (2013).

    Article  ADS  Google Scholar 

  11. P. Strange and L. H. Ryder, Phys. Lett. A 380, 3465 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  12. K. Bakke, Mod. Phys. Lett. B 27, 1350018 (2013).

  13. H. F. Mota and K. Bakke, Phys. Rev. D 89, 027702 (2014).

  14. M. Hosseinpour and H. Hassanabadi, Eur. Phys. J. Plus 130, 236 (2015).

    Article  Google Scholar 

  15. V. E. Ambrus and E. Winstanley, Phys. Rev. D 93, 104014 (2016).

  16. L. B. Castro, Eur. Phys. J. C 76, 61 (2016).

    Article  ADS  Google Scholar 

  17. H. F. Mota and K. Bakke, Gen. Relativ. Grav. 49, 104 (2017).

    Article  ADS  Google Scholar 

  18. R. L. L. Vituria and K. Bakke, Eur. Phys. J. C 78, 175 (2018).

    Article  ADS  Google Scholar 

  19. L. C. N. Santos and C. C. Barros, Jr., Eur. Phys. J. C 78, 13 (2018).

    Article  ADS  Google Scholar 

  20. B.-Q. Wang, Z.-W. Long, C.-Y. Long, and S.-R. Wu, Int. J. Mod. Phys. A 33, 1850158 (2018).

  21. L. C. N. Santos and C. C. Barros, Jr., Int. J. Mod. Phys. A 33, 1850122 (2018).

  22. R. L. L. Vituria, Eur. Phys. J. C 79, 844 (2019).

    Article  ADS  Google Scholar 

  23. L. C. N. Santos and C. C. Barros, Int. J. Geom. Methods Mod. Phys. 16, 1950140 (2019).

  24. A. V. D. M. Maia and K. Bakke, Eur. Phys. J. C 79, 551 (2019).

    Article  ADS  Google Scholar 

  25. K. Bakke, Eur. Phys. J. Plus 134, 546 (2019).

    Article  Google Scholar 

  26. L. C. N. Santos, C. E. Mota, and C. C. Barros, Adv. High Energy Phys. 2019, 2729352 (2019).

  27. F. Ahmed, Chin. J. Phys. 66, 587 (2020).

    Article  Google Scholar 

  28. K. Bakke and H. Belich, Int. J. Mod. Phys. A 35, 2050023 (2020).

  29. K. Bakke, V. B. Bezerra, and R. L. L. Vituria, Int. J. Mod. Phys. A 35, 2050129 (2020).

  30. F. Ahmed, Int. J. Mod. Phys. A 35, 2050101 (2020).

  31. E. V. B. Leite, H. Belich, and R. L. L. Vituria, Mod. Phys. Lett. A 35, 2050283 (2020).

  32. F. Ahmed, Int. J. Mod. Phys. A 36, 2150204 (2021).

  33. F. Ahmed, Pramana-J. Phys. 95, 159 (2021).

    Google Scholar 

  34. M. G. Sagnac, C. R. Acad. Sci. (Paris) 157, 708 (1913).

    Google Scholar 

  35. M. G. Sagnac, C. R. Acad. Sci. (Paris) 157, 1410 (1913).

    Google Scholar 

  36. E. J. Post, Rev. Mod. Phys. 39, 475 (1967).

    Article  ADS  Google Scholar 

  37. Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  38. M. Peshkin and A. Tonomura, The Aharonov–Bohm Effect, Vol. 340 of Lecture Notes in Physics (Springer, Berlin, 1989).

  39. W. Greiner, Relativistic Quantum Mechanics: Wave Equations (Springer, Berlin, 2000).

    Book  MATH  Google Scholar 

  40. E. R. F. Medeiros and E. R. B. de Mello, Eur. Phys. J. C 72, 2051 (2012).

    Article  ADS  Google Scholar 

  41. E. V. B. Leite, H. Belich, and R. L. L. Vituria, Adv. High Energy Phys. 2019, 6740360 (2019).

  42. R. L. L. Vituria and K. Bakke, Eur. Phys. J. Plus 133, 490 (2018).

    Article  Google Scholar 

  43. L. C. N. Santos and C. C. Barros Jr., Eur. Phys. J. C 77, 186 (2017).

    Article  ADS  Google Scholar 

  44. A. L. C. de Oliveira and E. R. Bezerra de Mello, Class. Quantum Grav. 23, 5249 (2006).

    Article  ADS  Google Scholar 

  45. K. Bakke, Ann. Phys. (N. Y.) 341, 86 (2014).

    Article  ADS  Google Scholar 

  46. K. Bakke and C. Furtado, Ann. Phys. (N. Y.) 355, 48 (2015).

    Article  ADS  Google Scholar 

  47. A. B. Oliveira and K. Bakke, Ann. Phys. (N. Y.) 365, 66 (2016).

    Article  ADS  Google Scholar 

  48. A. B. Oliveira and K. Bakke, Proc. R. Soc. London, Ser. A 472, 20150858 (2016).

  49. P. M. T. Barboza and K. Bakke, Ann. Phys. (N. Y.) 361, 259 (2015).

    Article  Google Scholar 

  50. P. M. T. Barboza and K. Bakke, Eur. Phys. J. Plus 131, 32 (2016).

    Article  Google Scholar 

  51. E. V. B. Leite, H. Belich, and K. Bakke, Adv. High Energy Phys. 2015, 925846 (2015).

  52. F. Ahmed, Gen. Relativ. Grav. 51, 69 (2019).

    Article  ADS  Google Scholar 

  53. F. Ahmed, Gen. Relativ. Grav. 51, 129 (2019).

    Article  ADS  Google Scholar 

  54. R. L. L. Vituria, C. Furtado, and K. Bakke, Ann.Phys. (N. Y.) 370, 128 (2016).

    Article  ADS  Google Scholar 

  55. R. L. L. Vituria and K. Bakke, Gen. Relativ. Grav. 48, 161 (2016).

    Article  ADS  Google Scholar 

  56. R. L. L. Vituria and H. Belich, Adv. High Energy Phys. 2019, 1248393 (2019).

  57. R. L. L. Vituria and H. Belich, Eur. Phys. J. C 78, 999 (2018).

    Article  ADS  Google Scholar 

  58. M. Abramowitz and I. A. Stegum, Handbook of Mathematical Functions (Dover, New York, 1965).

    Google Scholar 

  59. G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists (Elsevier Academic, London, 2005).

    MATH  Google Scholar 

  60. S. Bruce and P. Minning, Nuovo Cim. A 106, 711 (1993).

    Article  ADS  Google Scholar 

  61. M. Moshinsky and A. Szczepaniak, J. Phys. A: Math. Gen. 22, L817 (1989).

    Article  ADS  Google Scholar 

  62. F. Ahmed, Sci. Rep. 12, 8794 (2022).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ahmed.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, F. Gravitational Field Effects Produced by Topologically Non-Trivial Geometry and Rotating Frames Subject to a Coulomb-Type Scalar Potential. J. Exp. Theor. Phys. 135, 655–662 (2022). https://doi.org/10.1134/S1063776122110140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122110140

Navigation