Skip to main content
Log in

Noninertial effects on nonrelativistic topological quantum scattering

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We investigate noninertial effects on the scattering problem of a nonrelativistic particle in the cosmic string spacetime. By considering the nonrelativistic limit of the Dirac equation we are able to show, in the regime of small rotational frequencies, that the phase shift has two contribution: one related to the noninertial reference frame, and the other, due to the cosmic string conical topology. We also show that both the incident wave and the scattering amplitude are altered as a consequence of the noninertial reference frame and depend on the rotational frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Eq. (32), for \(\varpi =0\), is an alternative way of writing Eq. (5.25) of [39].

References

  1. Landau, L.D., Lifshitz, E.: Mechanics. A Course of Theoretical Physics, vol. 1. Pergamon Press, Oxford (1969)

    Google Scholar 

  2. Landau, L.D., Lifshitz, E.: Statistical Physics, Part 1. Pergamon Press, Oxford (1980)

    Google Scholar 

  3. Mashhoon, B.: Neutron interferometry in a rotating frame of reference. Phys. Rev. Lett. 61, 2639–2642 (1988)

    Article  Google Scholar 

  4. Rizzi, G., Ruggiero, M.L.: Relativity in Rotating Frames: Relativistic Physics in Rotating Reference Frames, vol. 135. Springer Science and Business Media, (2013)

  5. Anandan, J., Suzuki, J.: Quantum Mechanics in a Rotating Frame, [arXiv:quant-ph/0305081]

  6. Sagnac, G.: L’éther lumineux démontré par l’effet du vent relatif d’éther dans un interféromètre en rotation uniforme. C. R. Acad. Sci. 157, 708 (1913)

    Google Scholar 

  7. Sagnac, G.: Sur la preuve de la réalité de l’éther lumineux par l’expérience de l’interférographe tournant. C.R. Acad. Sci. 157, 1410 (1913)

    Google Scholar 

  8. Anandan, J.: Gravitational and rotational effects in quantum interference. Phys. Rev. D 15, 1448–1457 (1977)

    Article  Google Scholar 

  9. Iyer, B.R.: Dirac field theory in rotating coordinates. Phys. Rev. D 26, 1900–1905 (1982)

    Article  Google Scholar 

  10. Post, E.J.: Sagnac effect. Rev. Mod. Phys. 39, 475–493 (1967)

    Article  Google Scholar 

  11. Sakurai, J.J.: Comments on quantum mechanical interference due to the Earth’s rotation. Phys. Rev. D 21, 2993 (1980)

    Article  Google Scholar 

  12. Aharonov, Y., Carmi, G.: Quantum aspects of the equivalence principle. Found. Phy. 3(4), 493–498 (1973)

    Article  Google Scholar 

  13. Page, L.A.: Effect of Earth’s rotation in Neutron interferometry. Phys. Rev. Lett. 35, 543–543 (1975)

    Article  Google Scholar 

  14. Werner, S.A., Staudenmann, J.L., Colella, R.: Effect of Earth’s rotation on the quantum mechanical phase of the Neutron. Phys. Rev. Lett. 42, 1103–1106 (1979)

    Article  Google Scholar 

  15. Hehl, F.W., Ni, W.-T.: Inertial effects of a Dirac particle. Phys. Rev. D 42, 2045–2048 (1990)

    Article  Google Scholar 

  16. Dantas, L., Furtado, C., Silva Netto, A.L.: Quantum ring in a rotating frame in the presence of a topological defect. Phys. Lett. A. 379, 11–15 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fonseca, I.C., Bakke, K.: Rotating effects on an atom with a magnetic quadrupole moment confined to a quantum ring. Eur. Phys. J. Plus. 131(3), 67 (2016)

    Article  Google Scholar 

  18. Fischer, U.R., Schopohl, N.: Hall state quantization in a rotating frame. EPL (Europhys. Lett.) 54(4), 502 (2001)

    Article  Google Scholar 

  19. Matsuo, M., Ieda, J., Saitoh, E., Maekawa, S.: Effects of mechanical rotation on spin currents. Phys. Rev. Lett. 106, 076601 (2011)

    Article  Google Scholar 

  20. Chowdhury, D., Basu, B.: Effect of spin rotation coupling on spin transport. Ann. Phys. 339, 358–370 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Matsuo, M., Ieda, J., Saitoh, E., Maekawa, S.: Spin-dependent inertial force and spin current in accelerating systems. Phys. Rev. B. 84, 104410 (2011)

    Article  Google Scholar 

  22. Lu, L.-H., Li, Y.-Q.: Effects of an optically induced non-abelian gauge field in cold atoms. Phys. Rev. A. 76, 023410 (2007)

    Article  Google Scholar 

  23. Landau, L.D., Lifshitz, E.: The Classical Theory of Fields, vol. 2., 4th edn. Elsevier, Oxford (1980)

    MATH  Google Scholar 

  24. Soares, I.D., Tiomno, J.: The physics of the Sagnac-Mashhoon effects. Phys. Rev. D 54, 2808–2813 (1996)

    Article  Google Scholar 

  25. Mota, H. F., Bakke, K.: Noninertial effects on the ground state energy of a massive scalar field in the cosmic string spacetime, Phys. Rev. D89(2), 027702 (2014) [arXiv:1401.3728]

  26. Castro, L.B.: Noninertial effects on the quantum dynamics of scalar bosons, Eur. Phys. J. C76(2), 61, (2016) [arXiv:1511.0193]

  27. Hosseinpour, M., Hassanabadi, H.: DKP Equation in a rotating frame with magnetic cosmic string background, Eur. Phys. J. Plus. 130(11), 236, (2015) [arXiv:1505.0009]

  28. M. Dvornikov, Galvano-rotational effect induced by electroweak interactions in pulsars, JCAP1505 (2015), no. 05 037, [arXiv:1503.0060]

  29. Dvornikov, M.: Neutrino interaction with background matter in a non-inertial frame, Mod. Phys. Lett.A30(23), 1530017 (2015) [arXiv:1503.0143]

  30. Bakke, K.: Noninertial effects on the Dirac oscillator in a topological defect spacetime. Eur. Phys. J. Plus 127, 82 (2012). [arXiv:1209.0369]

    Article  Google Scholar 

  31. Bakke, K.: On noninertial effects inducing a confinement of a neutral particle to a hard-wall confining potential. Cent. Eur. J. Phys. 11(11), 1589–1597 (2013)

    Google Scholar 

  32. Bakke, K.: Torsion and noninertial effects on a nonrelativistic Dirac particle. Ann. Phys. 346, 51–58 (2014). [arXiv:1405.5138]

    Article  MathSciNet  MATH  Google Scholar 

  33. Vilenkin, A., Shellard, E.P.S.: Cosmic Strings and Other Topological Defects. Cambridge monographs on mathematical physics. Cambridge Univ. Press, Cambridge (1994)

    MATH  Google Scholar 

  34. Hindmarsh, M., Kibble, T.: Cosmic strings. Rept. Prog. Phys. 58, 477–562 (1995). [arXiv:hep-ph/9411342]

    Article  Google Scholar 

  35. Copeland, E.J., Pogosian, L., Vachaspati, T.: Seeking string theory in the cosmos. Class. Quant. Grav. 28, 204009 (2011). [arXiv:1105.0207]

    Article  MathSciNet  MATH  Google Scholar 

  36. Santana Mota, H., Hindmarsh, M.: Big-Bang nucleosynthesis and gamma-ray constraints on cosmic strings with a large higgs condensate, Phys.Rev.D91(4), 043001 (2015) [arXiv:1407.3599]

  37. ’t Hooft, G.: Nonperturbative two particle scattering amplitudes in (2+1)-dimensional quantum gravity, Commun. Math. Phys. 117,685 (1988)

  38. Deser, S., Jackiw, R.: Classical and quantum scattering on a cone. Commun. Math. Phys. 118, 495 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  39. de Sousa Gerbert, P., Jackiw, R.: Classical and quantum scattering on a spinning cone. Commun. Math. Phys. 124, 229 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mota, H.: Topological quantum scattering under the influence of a nontrivial boundary condition. Mod. Phys. Lett. A 31(11), 1650074 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Spinally, J., Bezerra de Mello, E., Bezerra, V.: Relativistic quantum scattering on a cone [arXiv:gr-qc/0012103]

  42. Alvarez, M., de Carvalho Filho, F.: Time dependent quantum scattering in (2+1)-dimensional gravity. Commun. Math. Phys. 178, 467–482 (1996). [arXiv:hep-th/9507134]

    Article  MathSciNet  MATH  Google Scholar 

  43. Kibble, T.W.B.: Topology of cosmic domains and strings. J. Phys. A 9, 1387–1398 (1976)

    Article  MATH  Google Scholar 

  44. Katanaev, M.O., Volovich, I.V.: Theory of defects in solids and three-dimensional gravity. Ann. Phys. 216, 1–28 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  45. Katanaev, M.O., Volovich, I.V.: Scattering on dislocations and cosmic strings in the geometric theory of defects, Ann. Phys. 271, 203–232, (1999) [arXiv:gr-qc/9801081]

  46. Sokolov, D.D., Starobinskii, A.A.: The structure of the curvature tensor at conical singularities. Sov. Phys. Dokl. 22, 312 (1977)

    MATH  Google Scholar 

  47. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  48. Nakahara, M.: Geometry, Topology and Physics. CRC Press, (2003)

  49. Thorne, K.S., Wheeler, J.A., Misner, C.W.: Gravitation. Freeman, (2000)

  50. Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, vol. 1. Wiley, New York (1972)

    Google Scholar 

  51. Greiner, W.: Relativistic Quantum Mechanics: Wave Equations, vol. 3. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  52. Schluter, P., Wietschorke, K.h., Greiner, W.: The Dirac Equation on orthogonal coordinate systems: i the local representation. J. Phys. A 16, 1999–2016 (1983)

  53. Arfken, G.B., Weber, H.J., Harris, F.E.: Mathematical Methods for Physicists. Academic press, seventh edition ed., (2013)

  54. Abramowitz, M., Stegun, I.A., et al.: Handbook of mathematical functions. Appl. Mathe. Ser. 55, 62 (1966)

    Google Scholar 

  55. Bragança, E.A.F., Santana Mota, H.F., Bezerra de Mello, E.R.: Induced vacuum bosonic current by magnetic flux in a higher dimensional compactified cosmic string spacetime, Int. J. Mod. Phys. D. 24(07), 1550055 (2015)[arXiv:1410.1511]

  56. Bezerra de Mello, E.R., Bezerra, V.B., Saharian, A.A., Harutyunyan, H.H.: Vacuum currents induced by a magnetic flux around a cosmic string with finite core, Phys. Rev. D. 91(6) 064034 (2015) [arXiv:1411.1258]

  57. Hagen, C.R.: The Aharonov-Bohm scattering amplitude. Phys. Rev. D 41, 2015 (1990)

    Article  MathSciNet  Google Scholar 

  58. Bezerra, V.B.: J. Math. Phys. 38, 2553 (1997)

    Article  MathSciNet  Google Scholar 

  59. Vitória, R.L.L., Bakke, K.: Gen. Relativ. Gravit. 48, 161 (2016)

    Article  Google Scholar 

  60. Puntigam, R.A., Soleng, H.H. (1997) Volterra distortions, spinning strings, and cosmic defects, Class. Quant. Grav. 14, pp. 1129–1149 [arXiv:gr-qc/9604057]

  61. Letelier, P.S.: Spinning strings as torsion line space-time defects. Class. Quant. Grav. 12, 471–478 (1995)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brazil) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Bakke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mota, H.F., Bakke, K. Noninertial effects on nonrelativistic topological quantum scattering. Gen Relativ Gravit 49, 104 (2017). https://doi.org/10.1007/s10714-017-2266-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-017-2266-z

Keywords

Navigation