Skip to main content
Log in

Theory of Vortex-Like Structures in Perforated Magnetic Films Accounting Demagnetizing Fields

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Vortex-like inhomogeneities that can appear in ferromagnetic films with strong easy-plane uniaxial anisotropy in the presence of antidotes in the form of artificial nanoscale holes or nonmagnetic inclusions are investigated. Peculiarities of the structure of such type of nanoobjects are considered for various geometries of holes, and the effect of demagnetizing fields on vortex-like inhomogeneities localized near one, two, or four holes is analyzed. It is shown that the analytic estimates obtained here are in all cases in good agreement with the results of numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. T. Shinjo, T. Okuno, R. Hassdorf, et al., Science (Washington, DC, U. S.) 289, 930 (2000).

    Article  ADS  Google Scholar 

  2. S. Muhlbauer, F. Jonietz, C. Pfleiderer, et al., Science (Washington, DC, U. S.) 323, 915 (2009).

    Article  ADS  Google Scholar 

  3. M. Lee W. Kang, Y. Onose, et al., Phys. Rev. Lett. 102, 186601 (2009).

  4. T. Schulz, R. Ritz, A. Bauer, et al., Nat. Phys. 8, 301 (2012).

    Article  Google Scholar 

  5. K. Everschor-Sitte, J. Masell, R. M. Reeve, et al., J. Appl. Phys. 124, 240901 (2018).

  6. M. V. Sapozhnikov, O. V. Ermolaeva, E. V. Skorokhodov, N. S. Gusev, and M. N. Drozdov, JETP Lett. 107, 364 (2018).

    Article  ADS  Google Scholar 

  7. J. Zang, M. Mostovoy, I. H. Han, et al., Phys. Rev. Lett. 107, 136804 (2011).

  8. G. Srinivasan, A. Sengupta, and K. Roy, Sci. Rep. 6, 29545 (2016).

    Article  ADS  Google Scholar 

  9. E. B. Magadeev and R. M. Vakhitov, Bull. Russ. Acad. Sci.: Phys. 77, 1283 (2013).

    Article  Google Scholar 

  10. E. B. Magadeev and R. M. Vakhitov, JETP Lett. 115, 114 (2022).

    Article  ADS  Google Scholar 

  11. D. Navas, R. V. Verba, A. Hierro-Rodriguez, et al., APL Matter. 7, 0811114 (2019).

  12. A. R. Pereira, J. Appl. Phys. 97, 094303 (2005).

  13. F. A. Apolonio, W. A. Moria-Melo, F. P. Crisafuli, et al., J. Appl. Phys. 106, 084320 (2009).

  14. D. Toscano, S. A. Leonel, P. Z. Coura, et al., Appl. Phys. Lett. 101, 252402 (2012).

  15. J. Muller and A. Rosch, Phys. Rev. B 91, 054410 (2015).

  16. M. Xu, J. Zhang, D. Meng, et al., Phys. Lett. A 433, 128034 (2022).

  17. Yu. I. Latyshev, A. P. Orlov, A. V. Frolov, V. A. Volkov, I. V. Zagorodnev, V. A. Skuratov, Yu. V. Petrov, O. F. Vyvenko, D. Yu. Ivanov, M. Konczykowski, and P. Monceau, JETP Lett. 98, 214 (2013).

    Article  ADS  Google Scholar 

  18. U. Welp, V. K. Vlasko-Vlasov, G. W. Cratree, et al., Appl. Phys. Lett. 79, 1315 (2001).

    Article  ADS  Google Scholar 

  19. M. V. Sapozhnikov, S. N. Vdovichev, O. L. Ermolaeva, et al., Appl. Phys. Lett. 109, 042406 (2016).

  20. E. Valdes-Bango, M. Velez, L. M. Alvarez-Prado, et al., AIP Adv. 7, 056303 (2017).

  21. M. J. Donahue and D. G. Porter, OOMMF User’s Guide, Version 2.0a3 (Natl. Inst. Stand. Technol., Gaithersburg, MD, USA, 2021).

    Google Scholar 

  22. A. Hubert and R. Shafer, Magnetic Domains (Spinger, Berlin, 2007).

    Google Scholar 

  23. Y. Nakatani, K. Yamada, and A. Hirohata, Sci. Rep. 9, 13475 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

This study was performed under the State assignment for laboratory research works (no. MN-8/1356 from 20.09.2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Vakhitov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

APPENDIX A. CALCULATION OF ENERGY OF THE STATE LOCALIZED ON TWO HOLES

APPENDIX A. CALCULATION OF ENERGY OF THE STATE LOCALIZED ON TWO HOLES

To begin with, we note that vector ∇ϕ in polar coordinate system (r, ϕ) is equal in magnitude to vector r/r2 and forms a constant angle of π/2 with it. Taking this into account and substituting relation (2) into (1), we obtain

$$\begin{gathered} E = {{k}^{2}}Ah{{\int {\left( {\frac{{{{{\mathbf{r}}}_{1}}}}{{r_{1}^{2}}} - \frac{{{{{\mathbf{r}}}_{2}}}}{{r_{2}^{2}}}} \right)} }^{2}}dS \\ = {{k}^{2}}Ah\int {\frac{{{{a}^{2}}}}{{r_{1}^{2}r_{2}^{2}}}} dS = {{k}^{2}}Ah({{G}_{1}} + {{G}_{2}}), \\ \end{gathered} $$

where

$${{G}_{1}} = \int {\frac{{{{a}^{2}}}}{{r_{1}^{2}(r_{1}^{2} + r_{2}^{2})}}dS,\quad } {{G}_{2}} = \int {\frac{{{{a}^{2}}}}{{r_{2}^{2}(r_{1}^{2} + r_{2}^{2})}}dS.} $$

The integration domain for G1 is the entire plane except circles r1 < R1 and r2 < R2. However, the integrand of the expression for G1 in region r2 < R2 is close to a–2; consequently, circle r2 < R2 can be included into the integration domain without the loss of accuracy of the result. Then

$${{G}_{1}} = \int\limits_0^{2\pi } {\int\limits_{{{R}_{1}}}^\infty {\frac{{{{a}^{2}}}}{{r_{1}^{2}(r_{1}^{2} + r_{2}^{2})}}{{r}_{1}}d{{r}_{1}}d{{\phi }_{1}}.} } $$

Evaluating this integral considering that \(r_{2}^{2}\) = \(r_{1}^{2}\) + a2 + 2r1acosϕ1 and neglecting terms of order (R1/a)4, we obtain G1 = 2πln(a/R1). Analogously, G2 = 2πln(a/R2), which gives expression (3).

1.1 APPENDIX B. CALCULATION OF ENERGY OF THE STATE LOCALIZED ON FOUR HOLES

The magnetization distribution corresponding to the third inhomogeneity in Fig. 3 is described by the following relation analogous to expression (2):

$$\theta = {{\phi }_{1}} - {{\phi }_{2}} + {{\phi }_{3}} - {{\phi }_{4}},$$

where the holes are numbered clockwise. Analogously to Appendix A, we obtain

$$E = Ah\int {{{{\left( {\frac{{{{{\mathbf{r}}}_{1}}}}{{r_{1}^{2}}} - \frac{{{{{\mathbf{r}}}_{2}}}}{{r_{2}^{2}}} + \frac{{{{{\mathbf{r}}}_{3}}}}{{r_{3}^{2}}} - \frac{{{{{\mathbf{r}}}_{4}}}}{{r_{4}^{2}}}} \right)}}^{2}}dS.} $$

Using identity

$$\begin{gathered} {{(a - b + c - d)}^{2}} = {{(a - b)}^{2}} + {{(b - c)}^{2}} \\ \, + {{(c - d)}^{2}} + {{(d - a)}^{2}} - {{(a - c)}^{2}} - {{(n - d)}^{2}} \\ \end{gathered} $$

and taking into account the system symmetry, we obtain E = Ah(4M1 – 2M2), where

$${{M}_{1}} = \int {{{{\left( {\frac{{{{{\mathbf{r}}}_{1}}}}{{r_{1}^{2}}} - \frac{{{{{\mathbf{r}}}_{2}}}}{{r_{2}^{2}}}} \right)}}^{2}}dS,\quad {{M}_{2}} = \int {{{{\left( {\frac{{{{{\mathbf{r}}}_{1}}}}{{r_{1}^{2}}} - \frac{{{{{\mathbf{r}}}_{3}}}}{{r_{3}^{2}}}} \right)}}^{2}}dS.} } $$

Disregarding the fact that the circles corresponding to holes 3 and 4 are not contained in integration domain of M1 and repeating the arguments used in Appendix A, we obtain M1 = 4πln(a/R). Integral M2 differs from M1 only in the distance between the centers of the circles, which equals a\(\sqrt 2 \) in the case of circles 1 and 3. Consequently, M2 = 2πln(a\(\sqrt 2 \)/R), which finally gives E = 8πAhln(a/R\(\sqrt 2 \)).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magadeev, E.B., Vakhitov, R.M. & Kanbekov, R.R. Theory of Vortex-Like Structures in Perforated Magnetic Films Accounting Demagnetizing Fields. J. Exp. Theor. Phys. 135, 364–371 (2022). https://doi.org/10.1134/S1063776122090151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122090151

Navigation