Skip to main content
Log in

Microscopic theory of vortex pinning on columnar defects in conventional and chiral superconductors

  • Scientific Summaries
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The mechanisms of individual vortex pinning and stability of multivortex configurations in different super-conducting compounds and artificial structures are analyzed on the basis of microscopic theory, which allowed describing the corresponding modification of the anomalous spectral branches in the quasiparticle spectrum caused by the electron scattering at the defect. The individual pinning potentials and corresponding depinning currents are evaluated. The experimentally observable consequences for the scanning tunneling microscopy characteristics and high-frequency field response are discussed. The comparative study of the conventional and chiral superconductors allowed suggesting experimental tests probing the superconducting gap symmetry. The chiral superconductors are shown to reveal a strong dependence of the pinning characteristics on the mutual orientation of the magnetic field and internal angular momentum of the Cooper pair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Mkrtchyan and V. V. Shmidt, Sov. Phys. JETP 34, 195 (1972).

    ADS  Google Scholar 

  2. A. Buzdin and D. Feinberg, Physica C 256, 303 (1996).

    Article  ADS  Google Scholar 

  3. A. Buzdin and M. Daumens, Physica C 294, 257 (1998).

    Article  ADS  Google Scholar 

  4. H. Nordborg and V. M. Vinokur, Phys. Rev. B 62, 12408 (2000).

    Article  ADS  Google Scholar 

  5. E. V. Thuneberg, J. Kurkijarvi, and D. Rainer, Phys. Rev. Lett. 48, 1853 (1982).

    Article  ADS  Google Scholar 

  6. E. V. Thuneberg, J. Kurkijarvi, and D. Rainer, Phys. Rev. B 29, 3913 (1984).

    Article  ADS  Google Scholar 

  7. E. V. Thuneberg, J. Low Temp. Phys. 57, 415 (1984).

    Article  ADS  Google Scholar 

  8. N. B. Kopnin, Theory of Nonequilibrium Superconductivity (Oxford Univ. Press, New York, 2001).

    Book  Google Scholar 

  9. C. Caroli, P. G. de Gennes, and J. Matricon, Phys. Lett. 9, 307 (1964).

    Article  ADS  MATH  Google Scholar 

  10. C. W. J. Beenakker, Phys. Rev. Lett. 67, 3836 (1991).

    Article  ADS  Google Scholar 

  11. A. S. Mel’nikov, A. V. Samokhvalov, and M. N. Zubarev, Phys. Rev. B 79, 134529 (2009).

    Article  ADS  Google Scholar 

  12. G. E. Volovik, JETP Lett. 57, 244 (1993).

    ADS  Google Scholar 

  13. B. Rosenstein, I. Shapiro, E. Deutch, and B. Ya. Shapiro, Phys. Rev. B 84, 134521 (2011).

    Article  ADS  Google Scholar 

  14. A. S. Mel’nikov and A. V. Samokhvalov, JETP Lett. 94, 759 (2011).

    Article  Google Scholar 

  15. M. Baert, V. V. Metlushko, R. Jonckheere, V. V. Moshchalkov, and Y. Bruynseraede, Phys. Rev. Lett. 74, 3269 (1995).

    Article  ADS  Google Scholar 

  16. A. V. Silhanek, S. Raedts, M. J. van Bael, and V. V. Moshchalkov, Phys. Rev. B 70, 054515 (2004).

    Article  ADS  Google Scholar 

  17. A. I. Buzdin, Phys. Rev. B 47, 11416 (1993).

    Article  ADS  Google Scholar 

  18. A. Bezryadin, A. Buzdin, and B. Pannetier, Phys. Lett. A 195, 373 (1994).

    Article  ADS  Google Scholar 

  19. G. Karapetrov, J. Fedor, M. Iavarone, D. Rosenmann, and W. K. Kwok, Phys. Rev. Lett. 95, 167002 (2005).

    Article  ADS  Google Scholar 

  20. I. V. Grigorieva, W. Escoffier, V. R. Misko, B. J. Baelus, F. M. Peeters, L. Y. Vinnikov, and S. V. Dubonos Phys. Rev. Lett. 99, 147003 (2007).

  21. Y. Tanaka, S. Kashiwaya, and H. Takayanagi, Jpn. J. Appl. Phys. 34, 4566 (1995).

    Article  ADS  Google Scholar 

  22. M. Eschrig, D. Rainer, and J. A. Sauls, in Vortices in Unconventional Superconductors and Superfluids, Ed. by R. P. Huebner, N. Schopohl, and G. E. Volovik (Springer, Berlin, 2001), p. 175.

  23. A. S. Mel’nikov and V. M. Vinokur, Nature 415, 60 (2002).

    Article  ADS  Google Scholar 

  24. A. S. Mel’nikov and M. A. Silaev, JETP Lett. 83, 578 (2006).

    Article  Google Scholar 

  25. A. S. Mel’nikov, D. A. Ryzhov, and M. A. Silaev, Phys. Rev. B 78, 064513 (2008).

    Article  ADS  Google Scholar 

  26. M. M. Virtanen and M. M. Salomaa, Phys. Rev. B 60, 14581 (1999).

    Article  ADS  Google Scholar 

  27. N. Schopohl and K. Maki, Phys. Rev. B 52, 490 (1995), N. Schopohl, arXiv:9804064 (unpublished).

    Article  ADS  Google Scholar 

  28. L. Kramer and W. Pesch, Z. Phys. 269, 59 (1974).

    Article  ADS  Google Scholar 

  29. V. L. Vadimov and A. S. Mel’nikov, arXiv:1412.6992 [cond-matsupr-con].

  30. C. Kallin, Rep. Prog. Phys. 75, 042501 (2012).

    Article  ADS  Google Scholar 

  31. Yu. S. Barash and A. S. Mel’nikov, Sov. Phys. JETP 73, 170 (1991).

  32. B. Y. Shapiro et al., to be published.

  33. B. Rosenstein, I. Shapiro, and B. Y. Shapiro, J. Phys.: Condens. Matter 25, 075701 (2013).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Mel’nikov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mel’nikov, A.S., Samokhvalov, A.V. & Vadimov, V.L. Microscopic theory of vortex pinning on columnar defects in conventional and chiral superconductors. Jetp Lett. 102, 775–783 (2015). https://doi.org/10.1134/S0021364015230101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364015230101

Keywords

Navigation