Skip to main content
Log in

Q Function for a Single-Atom Laser Operating in the “Classical” Regime

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A model of single-atom laser with incoherent pumping is investigated theoretically. In the stationary case, a linear homogeneous differential equation for the phase-averaged Husimi Q function is derived from the equation for the density operator of the system. In the regime in which the coupling of the cavity mode with an atom is much stronger than the coupling of the mode with the reservoir ensuring its damping, the asymptotic solution is obtained to this equation. This solution makes it possible to describe some statistical features of the single-atom laser (in particular, the weak sub-Poissonian photon statistics).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. I. R. Berchera and I. P. Degiovanni, Metrologia 56, 024001 (2019).

  2. V. D’ambrosio, N. Spagnolo, L. Del Re, et al., Nat. Commun. 4, 2432 (2013).

    Article  ADS  Google Scholar 

  3. S. Pogorzalek, K. G. Fedorov, M. Xu, et al., Nat. Commun. 10, 2604 (2019).

    Article  ADS  Google Scholar 

  4. K. S. Tikhonov, A. D. Manukhova, S. B. Korolev, T. Yu. Golubeva, and Yu. M. Golubev, Opt. Spectrosc. 127, 878 (2019).

    Article  ADS  Google Scholar 

  5. J. Shi, G. Patera, D. B. Horoshko, and M. I. Kolobov, J. Opt. Soc. Am. B 37, 3741 (2020).

    Article  ADS  Google Scholar 

  6. S. Ritter, C. Nolleke, C. Hahn, et al., Nature (London, U.K.) 484, 195 (2012).

    Article  ADS  Google Scholar 

  7. S. O. Tarasov, S. N. Andrianov, N. M. Arslanov, and S. A. Moiseev, Bull. Russ. Acad. Sci.: Phys. 82, 1042 (2018).

    Article  Google Scholar 

  8. E. N. Popov and V. A. Reshetov, JETP Lett. 111, 727 (2020).

    Article  ADS  Google Scholar 

  9. A. A. Sokolova, G. P. Fedorov, E. V. Il’ichev, and O. V. Astafiev, Phys. Rev. A 103, 013718 (2021).

  10. D. F. Smirnov and A. S. Troshin, Sov. Phys. Usp. 30, 851 (1987).

    Article  ADS  Google Scholar 

  11. S. Ya. Kilin and T. B. Krinitskaya, J. Opt. Soc. Am. B 8, 2289 (1991).

    Article  ADS  Google Scholar 

  12. Yi Mu and C. M. Savage, Phys. Rev. A 46, 5944 (1992).

    Article  ADS  Google Scholar 

  13. A. V. Kozlovskii and A. N. Oraevskii, J. Exp. Theor. Phys. 88, 666 (1999).

    Article  ADS  Google Scholar 

  14. B. Jones, S. Ghose, J. P. Clemens, P. R. Rice, and L. M. Pedrotti, Phys. Rev. A 60, 3267 (1999).

    Article  ADS  Google Scholar 

  15. T. B. Karlovich and S. Ya. Kilin, Opt. Spectrosc. 91, 343 (2001).

    Article  ADS  Google Scholar 

  16. S. Ya. Kilin and T. B. Karlovich, J. Exp. Theor. Phys. 95, 805 (2002).

    Article  ADS  Google Scholar 

  17. T. B. Karlovich and S. Ya. Kilin, Opt. Spectrosc. 103, 280 (2007).

    Article  ADS  Google Scholar 

  18. T. B. Karlovich, Opt. Spectrosc. 111, 722 (2011).

    Article  ADS  Google Scholar 

  19. N. V. Larionov and M. I. Kolobov, Phys. Rev. A 84, 055801 (2011).

  20. S. Ya. Kilin and A. B. Mikhalychev, Phys. Rev. A 85, 063817 (2012).

  21. N. V. Larionov and M. I. Kolobov, Phys. Rev. A 88, 013843 (2013).

  22. E. N. Popov and N. V. Larionov, Proc. SPIE 9917, 99172X (2016). https://doi.org/10.1117/12.2229228

  23. V. A. Bobrikova, R. A. Khachatryan, K. A. Barantsev, and E. N. Popov, Opt. Spectrosc. 127, 1070 (2019).

    Article  Google Scholar 

  24. N. V. Larionov, in Proceedings of the 2020 IEEE International Conference on Electrical Engineering and Photonics EExPolytech (2020), p. 265. https://doi.org/10.1109/EExPolytech50912.2020.9243955

  25. N. V. Larionov, J. Phys.: Conf. Ser. 2103, 012158 (2021). https://doi.org/10.1088/1742-6596/2103/1/012158

  26. B. Parvin, Eur. Phys. J. Plus 136, 728 (2021).

    Article  Google Scholar 

  27. D. B. Horoshko, Chang-Shui Yu, and S. Ya. Kilin, J. Opt. Soc. Am. B 38, 3088 (2021).

    Article  ADS  Google Scholar 

  28. J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, Nature (London, U.K.) 425, 268 (2003).

    Article  ADS  Google Scholar 

  29. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, Opt. Express 17, 15975 (2009).

    Article  ADS  Google Scholar 

  30. F. Dubin, C. Russo, H. G. Barros, A. Stute, C. Becher, P. O. Schmidt, and R. Blatt, Nat. Phys. 6, 350 (2010).

    Article  Google Scholar 

  31. A. H. Nayfeh, Introduction to Perturbation Techniques (Wiley-VCH, Weinheim, 1993).

    MATH  Google Scholar 

  32. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ., Cambridge, 1995).

    Book  Google Scholar 

  33. G. S. Agarwal and S. Dutta Gupta, Phys. Rev. A 42, 1737 (1990).

    Article  ADS  Google Scholar 

  34. F. M. Fedorov, Infinite Systems of Linear Algebraic Equations and Their Applications (Nauka, Novosibirsk, 2011) [in Russian].

    Google Scholar 

Download references

Funding

This work was supported by the State assignment for fundamental research works (theme code FSEG-2020-0024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Larionov.

Ethics declarations

The author declares that he has no conflicts of interests.

Additional information

Translated by N. Wadhwa

APPENDIX

APPENDIX

Coefficients bik from Eq. (9) are given by

$$\begin{gathered} {{b}_{{02}}} = - \frac{1}{2}[1 + {{I}_{s}}(r + 1)],\quad {{b}_{{03}}} = 1; \\ {{b}_{{11}}} = - 3[1 + {{I}_{s}}(r + 1)], \\ {{b}_{{12}}} = \frac{1}{2}[7 - 3{{I}_{s}}(r + 1)],\quad {{b}_{{13}}} = 3; \\ {{b}_{{20}}} = - 3[1 + {{I}_{s}}(r + 1)], \\ {{b}_{{21}}} = \frac{1}{4}[ - 21 - 26{{I}_{s}}(r + 1) + 3I_{s}^{2}{{(r + 1)}^{2}}], \\ \end{gathered} $$
$$\begin{gathered} {{b}_{{22}}} = - 3[ - 4 + {{I}_{s}}(r + 1)],\quad {{b}_{{23}}} = 3; \\ {{b}_{{30}}} = \frac{1}{2}[ - 15 - 8{{I}_{s}}(r + 1) + 3I_{s}^{2}{{(r + 1)}^{2}}], \\ {{b}_{{31}}} = - \frac{1}{2}{{I}_{s}}[c(1 + {{I}_{s}}(r + 1)) - (r + 1)( - 13 + 3{{I}_{s}}(r + 1))], \\ {{b}_{{32}}} = \frac{1}{2}[23 + {{I}_{s}}(2c - 7(r + 1))],\quad {{b}_{{33}}} = 1; \\ {{b}_{{40}}} = \frac{1}{4}[ - 24 + {{I}_{s}}(r + 1 - 3c) - I_{s}^{3}(r + 1)(c + {{(r + 1)}^{2}}) \\ \, + I_{s}^{2}(8{{(r + 1)}^{2}} - c(3r + 4))], \\ \end{gathered} $$
(22)
$$\begin{gathered} {{b}_{{41}}} = \frac{1}{4}[15 - 2{{I}_{s}}(c + 10(r + 1)) \\ \, + I_{s}^{2}(5{{(r + 1)}^{2}} - 2c(2r + 1))], \\ {{b}_{{42}}} = \frac{1}{2}[7 + {{I}_{s}}(4c - 3(r + 1))]; \\ {{b}_{{50}}} = \frac{1}{4}[ - 6 + {{I}_{s}}(5(r + 1) - 3c) + I_{s}^{3}(r + 1)(c(r - 1) \\ \, - {{(r + 1)}^{2}}) + I_{s}^{2}(2{{(r + 1)}^{2}} - 4c)], \\ {{b}_{{51}}} = \frac{1}{2}[3 - 4{{I}_{s}}(r + 1) + I_{s}^{2}({{(r + 1)}^{2}} - 2cr)],\quad {{b}_{{52}}}\, = \,c{{I}_{s}}. \\ \end{gathered} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larionov, N.V. Q Function for a Single-Atom Laser Operating in the “Classical” Regime. J. Exp. Theor. Phys. 134, 135–143 (2022). https://doi.org/10.1134/S1063776122020078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122020078

Navigation