Skip to main content
Log in

Many-Spin Entanglement in Multiple Quantum NMR with a Dipolar Ordered Initial State

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Many-spin entanglement is investigated in a gas of spin-carrying molecules (atoms) in a nanopore under NMR conditions with a dipolar ordered initial state. To estimate the number of entangled spins, the second moment of the distribution of the intensities of multiple quantum (MQ) NMR coherences is used, which provides a lower bound for the quantum Fisher information. Many-spin entanglement is investigated at different temperatures and different numbers of spins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2009).

    MATH  Google Scholar 

  2. F. Arute, R. Babbush, J. C. Bardin, et al., Nature (London, U.K.) 574, 505 (2019).

    Article  ADS  Google Scholar 

  3. J. Baum, M. Munowitz, A. N. Garroway, and A. Pines, J. Chem. Phys. 83, 2015 (1985).

    Article  ADS  Google Scholar 

  4. G. B. Furman, V. M. Meerovich, and V. L. Sokolovsky, Phys. Rev. A 78 (2008).

  5. G. B. Furman, V. M. Meerovich, and V. L. Sokolovsky, Quantum Inform. Proc. 8, 283 (2009).

    Article  Google Scholar 

  6. E. B. Fel’dman and A. N. Pyrkov, JETP Lett. 88, 398 (2008).

    Article  ADS  Google Scholar 

  7. E. B. Fel’dman, A. N. Pyrkov, and A. I. Zenchuk, Phil. Trans. R. Soc. London, Ser. A 370, 4690 (2012).

    ADS  Google Scholar 

  8. M. Gärttner, P. Hauke, and A. M. Rey, Phys. Rev. Lett. 120, 040402 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  9. G. Tóth and I. Apellaniz, J. Phys. A 47, 424006 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  10. L. Pezzé, A. Smerzi, M. K. Oberthaler, et al., Rev. Mod. Phys. 90, 035005 (2018).

    Article  ADS  Google Scholar 

  11. J. Liu, H.-N. Xiong, F. Song, and X. Wang, Phys. A (Amsterdam, Neth.) 410, 167 (2014).

  12. A. Khitrin, Chem. Phys. Lett. 274, 217 (1997).

    Article  ADS  Google Scholar 

  13. S. I. Doronin, E. B. Fel’dman, and I. D. Lazarev, Phys. Rev. A 100, 022330 (2019).

    Article  ADS  Google Scholar 

  14. J. Baugh, A. Kleinhammes, D. Han, and Q. Wang, Science (Washington, DC, U. S.) 294, 1505 (2001).

    Article  ADS  Google Scholar 

  15. S. I. Doronin, A. V. Fedorova, E. B. Fel’dman, and A. I. Zenchuk, J. Chem. Phys. 131, 104109 (2009).

    Article  ADS  Google Scholar 

  16. S. I. Doronin, E. B. Fel’dman, E. I. Kuznetsova, et al., Phys. Rev. B 76, 144405 (2007).

    Article  ADS  Google Scholar 

  17. M. Goldman, Spin Temperature and Nuclear Magnetic Resonance in Solids (Clarendon, London, 1970).

    Google Scholar 

  18. C. P. Slichter and W. C. Holton, Phys. Rev. 122, 1701 (1961).

    Article  ADS  Google Scholar 

  19. J. Jeener and P. Broekaert, Phys. Rev. 157, 232 (1967).

    Article  ADS  Google Scholar 

  20. S. I. Doronin, E. B. Fel’dman, E. I. Kuznetsova, G. B. Furman, and S. D. Goren, JETP Lett. 86, 24 (2007).

    Article  ADS  Google Scholar 

  21. S. I. Doronin, E. B. Fel’dman, and A. I. Zenchuk, J. Exp. Theor. Phys. 113, 495 (2011).

    Article  ADS  Google Scholar 

  22. A. Abragam and M. Goldman, Nuclear Magnetism: Order and Disorder (Clarendon, London, 1982).

    Google Scholar 

  23. J. Baum and A. Pines, J. Am. Chem. Soc. 108, 7447 (1986).

    Article  Google Scholar 

  24. C. M. Sánchez, R. H. Acosta, P. R. Levstein, et al., Phys. Rev. A 90, 042122 (2014).

    Article  ADS  Google Scholar 

  25. M. Munowitz, A. Pines, and M. Mehring, J. Chem. Phys. 86, 3172 (1987).

    Article  ADS  Google Scholar 

  26. G. A. Alvarez, D. Suter, and R. Kaiser, Science (Washington, DC, U. S.) 349, 846 (2015).

    Article  ADS  Google Scholar 

  27. K. X. Wei, C. Ramanathan, and P. Cappellaro, Phys. Rev. Lett. 120, 070501 (2018).

    Article  ADS  Google Scholar 

  28. E. B. Fel’dman and M. G. Rudavets, J. Exp. Theor. Phys. 98, 207 (2004).

    Article  ADS  Google Scholar 

  29. E. B. Fel’dman and S. Lacelle, Chem. Phys. Lett. 253, 27 (1996).

    Article  ADS  Google Scholar 

  30. W. Zhang, P. Cappellaro, N. Antler, et al., Phys. Rev. A 80, 052323 (2009).

    Article  ADS  Google Scholar 

  31. D. Girolami and B. Yadin, Entropy 19, 124 (2017).

    Article  ADS  Google Scholar 

  32. C. W. Helstrom, Quantum Detection and Estimation Theory (Academic, New York, 1976).

    MATH  Google Scholar 

  33. L. Pezzé and A. Smerzi, Phys. Rev. Lett. 102, 100401 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  34. P. Hyllus, W. Laskowski, R. Krischek, et al., Phys. Rev. A 85, 022321 (2012).

    Article  ADS  Google Scholar 

  35. G. Tóth, Phys. Rev. A 85, 022322 (2012).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.A. Atsarkin for a helpful discussion.

Funding

This work was carried out as a part of the state task (state registration no. AAAA-A19-119071190017-7). This work was partially supported by the Russian Foundation for Basic Research (project nos. 20-03-00147 and 19-32-80004). One of the authors (I.D.L.) acknowledges support from the Foundation for the Development of Theoretical Physics and Mathematics “Basis” (project no. 19-1-5-130-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Lazarev.

Additional information

Translated by I. Nikitin

APPENDIX

APPENDIX

1.1 Two-Pulse Broekaert–Jeener Experiment at Low Zeeman Temperature and High Dipolar Temperature

Initially, the system is in a state of thermodynamic equilibrium in a strong external magnetic field with the density matrix

$${{\sigma }_{i}} = \frac{{\exp ({{\beta }_{L}}{{\omega }_{0}}{{I}_{z}})}}{{{{Z}_{i}}}},\quad {{Z}_{i}} = {\text{Tr}}\{ \exp ({{\beta }_{L}}{{\omega }_{0}}{{I}_{z}})\} ,$$
(A.1)

where βL is proportional to the inverse temperature of the lattice. After the first resonant x-pulse, we obtain

$$\begin{gathered} \sigma '(0) = \exp \left( {i\frac{\pi }{2}{{I}_{x}}} \right){{\sigma }_{i}}\exp \left( { - i\frac{\pi }{2}{{I}_{x}}} \right) \\ = \frac{{\exp ({{\beta }_{L}}{{\omega }_{0}}{{I}_{y}})}}{{{{Z}_{i}}}}, \\ \end{gathered} $$
(A.2)

where Iα is the operator of the projection of the total spin angular momentum onto the axis α = x, y, z. Then the system freely evolves over time τ, and after that a second resonant y-pulse is applied, which rotates the spins through angle θ around the y-axis of the RRF. As a result, we find that

$$\sigma '(\tau ) = \frac{{\exp ( - i\theta {{I}_{y}})\exp ( - i{{H}_{{dz}}}\tau )\exp ({{\beta }_{L}}{{\omega }_{0}}{{I}_{y}})\exp (i{{H}_{{dz}}}\tau )\exp (i\theta {{I}_{y}})}}{{{{Z}_{i}}}}.$$
(A.3)

After time T2 (T2 is the spin relaxation time [17]), the system reaches a state of thermodynamic equilibrium,

$${{\sigma }_{f}} = \frac{{\exp ({{\alpha }_{Z}}{{\omega }_{0}}{{I}_{z}} + {{\beta }_{d}}{{H}_{{dz}}})}}{{{{Z}_{f}}}},$$
(A.4)

where αZ and βd are the inverse Zeeman and dipolar temperatures. It is obvious that the system has a single equilibrium state, and the temperatures αZ and βd in the equilibrium state are determined from the conservation laws:

$${\text{Tr}}\{ {{I}_{z}}\sigma '(\tau )\} = {\text{Tr}}\{ {{I}_{z}}{{\sigma }_{f}}(\tau )\} ,$$
(A.5)
$${\text{Tr}}\{ {{H}_{{dz}}}\sigma '(\tau )\} = {\text{Tr}}\{ {{H}_{{dz}}}{{\sigma }_{f}}(\tau )\} .$$
(A.6)

We can rewrite Tr{Izσ'(τ)} as

$$\begin{gathered} {\text{Tr}}\{ {{I}_{z}}\sigma '(\tau )\} = \frac{1}{{{{Z}_{i}}}}{\text{Tr}}\{ \exp (i\theta {{I}_{y}}){{I}_{z}}\exp ( - i\theta {{I}_{y}}) \\ \times \exp ( - i{{H}_{{dz}}}\tau )\exp ({{\beta }_{L}}{{\omega }_{0}}{{I}_{y}})\exp (i{{H}_{{dz}}}\tau )\} \\ = \frac{1}{{{{Z}_{i}}}}{\text{Tr}}\{ ({{I}_{z}}\cos \theta - {{I}_{x}}\sin \theta )\exp ( - i{{H}_{{dz}}}\tau ) \\ \times \exp ({{\beta }_{L}}{{\omega }_{0}}{{I}_{y}})\exp (i{{H}_{{dz}}}\tau )\} \\ = \frac{1}{{{{Z}_{i}}}}{\text{Tr}}\{ \exp ( - i\pi {{I}_{y}})({{I}_{z}}\cos \theta - {{I}_{x}}\sin \theta ) \\ \times \exp ( - i{{H}_{{dz}}}\tau )\exp ({{\beta }_{L}}{{\omega }_{0}}{{I}_{y}})\exp (i{{H}_{{dz}}}\tau )\exp (i\pi {{I}_{y}})\} \\ = - \frac{1}{{{{Z}_{i}}}}{\text{Tr}}\{ ({{I}_{z}}\cos \theta - {{I}_{x}}\sin \theta )\exp ( - i{{H}_{{dz}}}\tau ) \\ \times \exp ({{\beta }_{L}}{{\omega }_{0}}{{I}_{y}})\exp (i{{H}_{{dz}}}\tau )\} = 0. \\ \end{gathered} $$
(A.7)

In expression (A.7), we took into account that [exp(–iπIy), Hdz] = 0. Since we consider the case of a high dipolar temperature, Eq. (A.5) can be rewritten as

$$\begin{gathered} 0 = \frac{1}{{{{Z}_{f}}}}{\text{Tr}}\{ {{I}_{z}}\exp ({{\alpha }_{Z}}{{\omega }_{0}}{{I}_{z}})\} \\ + \frac{\beta }{{{{Z}_{f}}}}{\text{Tr}}\{ {{I}_{z}}\exp ({{\alpha }_{Z}}{{\omega }_{0}}{{I}_{z}}){{H}_{{dz}}}\} . \\ \end{gathered} $$
(A.8)

Notice that Tr{Iz} = Tr{IzHdz} = 0. In such a case, αZ = 0 satisfies Eq. (A.5). Thus, in this case we obtain a dipolar ordered state.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarev, I.D., Fel’dman, E.B. Many-Spin Entanglement in Multiple Quantum NMR with a Dipolar Ordered Initial State. J. Exp. Theor. Phys. 131, 723–729 (2020). https://doi.org/10.1134/S1063776120110059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120110059

Navigation