Skip to main content
Log in

Nuclear polarization and entanglement in spin systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

An Erratum to this article was published on 13 March 2009

Abstract

We investigated relationships between entanglement measures and the order parameter (nuclear polarization) in nuclear spin systems controlled by the nuclear magnetic resonance (NMR) technique. Since spin polarization can be easily manipulated by the NMR technique, experimentalists are presented with an opportunity to study the dynamic properties of entanglement, i.e., the creation and evolution of entangled states. Our approach may constitute the basis for researching the relations between the entanglement measures and measurable parameters of order in other quantum systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Benenti G., Casati G., Strini G.: Principles of Quantum Computation and Information, vol. I and II. World Scientific, Singapore (2007)

    Google Scholar 

  3. Amico L., Fazio R., Osterloh A., Vedral V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  4. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement, http://arxiv.org/abs/quant-ph/0702225v1

  5. Bennett C.H., DiVincenzo D.P.: Quantum information and computation. Nature 404, 247 (2000)

    Article  ADS  Google Scholar 

  6. Bennett C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Roos C.F., Kim K., Riebe M., Blatt R.: ‘Designer atoms’ for quantum metrology. Nature 443, 316 (2006)

    Article  ADS  Google Scholar 

  8. Cappellaro P., Emerson J., Boulant N., Ramanathan C., Lloyd S., Cory D.G.: Entanglement assisted metrology. Phys. Rev. Lett. 94, 020502 (2005)

    Article  ADS  Google Scholar 

  9. Dowling M.R., Doherty A.C., Bartlett S.D.: Energy as an entanglement witness for quantum many-body systems. Phys. Rev. A 70, 062113 (2004)

    Article  ADS  Google Scholar 

  10. Toth G.: Entanglement detection in optical lattices of bosonic atoms with collective measurements. Phys. Rev. A 71, 010301(R) (2005)

    Article  ADS  Google Scholar 

  11. Brukner, C., Vedral, V.: Macroscopic Thermodynamical Witnesses of Quantum Entanglement, http://arxiv.org/abs/quant-ph/0406040v1

  12. Wiésniak M., Vedral V., Brukner C.: Magnetic susceptibility as a macroscopic entanglement witness. New J. Phys. 7, 258 (2005)

    Article  ADS  Google Scholar 

  13. Bennett C.H., Bernstein H.J., Popescu S., Schumacher B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  14. Popescu S., Rohrlich D.: Thermodynamics and the measure of entanglement. Phys. Rev. A 56, R3319 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  15. Mintert F., Carvalho A.R.R., Kús M., Buchleitner A.: Measures and dynamics of entangled states. Phys. Rep. 415, 207 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  16. Landau L.D., Lifshits E.M.: Statistical Physics. Butterworth-Heinemann, Oxford (1999)

    Google Scholar 

  17. Brout R.: Phase Transition. University of Brussels, New York (1968)

    Google Scholar 

  18. Abragam A., Goldman M.: Nuclear Magnetism: Order&Disorder. Clarendon Press, Oxford (1982)

    Google Scholar 

  19. Coffman V., Kundu J., Wootters W.: Distributed entanglement. Phys. Rev. A 61, 052306 (1999)

    Article  ADS  Google Scholar 

  20. Barankov, R., Polkovnikov, A.: Microscopic diagonal entropy and its connection to basic thermodynamic relations, http://arxiv.org/abs/0806.2862

  21. Warren W.S., Weitekamp D.P., Pines A.: Theory of selective excitation of multiple-quantum transitions. J. Chem. Phys. 73, 2084 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  22. Furman G.B., Meerovich V.M., Sokolovsky V.L.: Dynamics of entanglement in a one-dimensional Ising chain. Phys. Rev. A 77, 062330 (2008)

    Article  ADS  Google Scholar 

  23. Haeberlen U.: High Resolution NMR in Solids. Academic Press, New York (1976)

    Google Scholar 

  24. Mehring M.: High Resolution NMR Spectroscopy in Solids. Springer, Berlin (1976)

    Google Scholar 

  25. Cory D.G., Fahmy A.F., Havel T.F.: Ensemble quantum computing by NMR spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 94, 1634 (1997)

    Article  ADS  Google Scholar 

  26. Gershenfeld N., Chuang I.L.: Bulk spin resonance quantum computing. Science 275, 350 (1997)

    Article  MathSciNet  Google Scholar 

  27. Lee J.-S., Khitrin A.K.: Preparation of pseudopure states in a cluster of dipolar-coupled spins using multiple-quantum dynamics. Phys. Rev. A 70, 022330 (2004)

    Article  ADS  Google Scholar 

  28. Furman G.B.: Pseudopure state in homonuclear dipolar coupling spin systems. J. Phys. A: Math. Gen. 39, 15197 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Lee J.-S., Adams T., Khitrin A.K.: Experimental demonstration of a stimulated polarization wave in a chain of nuclear spins. New J. Phys. 9, 83 (2007)

    Article  ADS  Google Scholar 

  30. Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  31. Munowitz M., Pines A.: Principles and applications of multiple-quantum NMR. Adv. Chem. Phys. 66, 1 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Furman.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11128-009-0110-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furman, G.B., Meerovich, V.M. & Sokolovsky, V.L. Nuclear polarization and entanglement in spin systems. Quantum Inf Process 8, 283–291 (2009). https://doi.org/10.1007/s11128-009-0103-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-009-0103-3

Keywords

PACS

Navigation