Skip to main content
Log in

First-Principles Study on PdMnSn and PtMnSn Compounds in C1b Structure

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The phase stability, the electronic, mechanic and lattice dynamical properties of C1b-type PdMnSn and PtMnSn compounds were investigated using first principles density functional calculations within the generalized gradient approximation. The computed lattice constants of PdMnSn and PtMnSn compounds were in line with the experimental and theoretical data in the published literature. The elastic constants in the C1b structure for PdMnSn and PtMnSn compounds were carried out using the energy-strain method. The computed values of three independent elastic constants, both compounds are mechanically stable in the C1-type crystal structure and met the stability criteria. The electronic structure, total and partial density values of states, and total magnetic moment of these compounds were calculated and the evaluations were carried out by comparing with the existing results. Dynamic properties of PdMnSn and PtMnSn compounds were obtained using the density functional perturbation theory. Both of the compounds were dynamically stable due to the absence of the imaginary phonon frequencies. In addition, it was found that the compounds had a rapid rise in specific heat capacities from 0 to 300 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. P. Villars and L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed. (ASM Int., Materials Park, OH, 1991).

    Google Scholar 

  2. L. Offernes, P. Ravindran, C. W. Seim, and A. Kjekshus, J. Alloys Compd. 458, 47 (2008).

    Article  Google Scholar 

  3. M. J. Otto, R. A. M. van Woerden, P. J. van der Valk, et al., J. Phys.: Condens. Matter 1, 2341 (1989).

    ADS  Google Scholar 

  4. M. J. Otto, H. Feil, R. A. M. van Woerden, et al., J. Magn. Magn. Mater. 70, 33 (1987).

    Article  ADS  Google Scholar 

  5. K. Watanebe, J. Phys. Soc. Jpn. 28, 302 (1970).

    Article  ADS  Google Scholar 

  6. R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).

    Article  ADS  Google Scholar 

  7. M. Masumoto and K. Watanabe, Trans. Jpn. Inst. Met. 14, 408 (1970).

    Article  Google Scholar 

  8. B. Lindgren, K. Pernestal, S. Bedi, and E. Karlsson, J. Phys. F 7, 2405 (1977).

    Article  ADS  Google Scholar 

  9. S. E. Kulkova, S. V. Eremeev, T. Kakeshita, S. S. Kulkov, and G. E. Rudenski, Mater. Trans. 47, 599 (2006).

    Article  Google Scholar 

  10. E. A. Görlich, R. Kmieć, K. Łątka, et al., Phys. Status Solidi A 30, 331 (1975).

    Article  ADS  Google Scholar 

  11. I. Galanakis, S. Ostanin, M. Alouani, H. Dreyssé, and J. M. Wills, Phys. Rev. B 61, 4093 (2000).

    Article  ADS  Google Scholar 

  12. L. Offernes, P. Ravindran, and A. Kjekshus, J. Alloys Compd. 439, 37 (2007).

    Article  Google Scholar 

  13. A. Amudhavalli, R. Rajeswarapalanichamy, and K. Iyakutti, J. Alloys Compd. 708, 1216 (2017).

    Article  Google Scholar 

  14. M. De Jong, W. Chen, T. Angsten, et al., Sci. Data 2, 150009 (2015).

    Article  Google Scholar 

  15. A. Jain, S. P. Ong, G. Hautier, et al., Appl. Mater. 1, 011002 (2013).

    Article  ADS  Google Scholar 

  16. P. G. van Engen, K. H. J. Buschow, R. Jongebreur, and M. Erman, Appl. Phys. Lett. 42, 202 (1983).

    Article  ADS  Google Scholar 

  17. M. M. Kirillova, A. A. Makhnev, E. I. Shreder, V. P. Dyakina, and N. B. Gorina, Phys. Status Solidi B 187, 231 (1995).

    Article  ADS  Google Scholar 

  18. E. Şaşıoǧlu, L. M. Sandratskii, and P. Bruno, Phys. Rev. B 77, 064417 (2008).

    Article  ADS  Google Scholar 

  19. S. Baroni, A. dal Corso, S. de Gironcoli, et al., QuantumESPRESSO: Open-Source Package for Research in Electronic Structure, Simulation, and Optimization. http://www.pwscf.org/. Accessed 2005.

  20. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 80, 891 (1998).

    Article  ADS  Google Scholar 

  21. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  22. E. I. Isaev, QHA Project. http://qe-forge.org/qha. Accessed May 25, 2013.

  23. F. D. Murnaghan, Proc. Nat. Acad. Sci. U. S. A. 30, 244 (1944).

    Article  ADS  MathSciNet  Google Scholar 

  24. I. Galanakis, P. Mavropoulos, and P. H. Dederichs, J. Phys. D: Appl. Phys. 39, 765 (2006).

    Article  ADS  Google Scholar 

  25. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford Univ. Press, New York, 1954).

    MATH  Google Scholar 

  26. S. F. Pugh, London, Edinburgh, Dublin Philos. Mag. J. Sci. 45 (367), 823 (1954).

    Article  Google Scholar 

  27. A. Petit and P. Dulong, Ann. Chem. Phys. 10, 395 (1819).

    Google Scholar 

  28. D. Wee, B. Kozinsky, B. Pavan, and M. Fornari, J. Electron. Mater. 41, 977 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nihat Arıkan or Yasin Göktürk Yıldız.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nihat Arıkan, Yıldız, Y.G. & Yıldız, G.D. First-Principles Study on PdMnSn and PtMnSn Compounds in C1b Structure. J. Exp. Theor. Phys. 130, 673–680 (2020). https://doi.org/10.1134/S1063776120050015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120050015

Navigation