Skip to main content
Log in

First-Principles Study on the Structural, Elastic and Thermodynamic Properties of Binary Pd-Sn Compounds

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The structural, mechanical, thermodynamic and electronic properties of Pd-Sn compounds including PdSn4, PdSn3, PdSn2, PdSn, Pd2Sn and Pd3Sn have been investigated by first-principles calculation. Results show that all of the Pd-Sn compounds considered here are thermodynamically and mechanically stable, ductile, elastic anisotropic and have low micro-hardness. Among them, Pd2Sn is the most stable phase due to the lowest formation energy; PdSn exhibits the strongest anisotropy of the bulk modulus and shear modulus; Pd3Sn shows the isotropy of bulk modulus according to the percentage bulk modulus calculation. Debye temperature and minimum thermal conductivity have approximately the same variation trend with the percentage of Pd where Pd3Sn (or PdSn4) has the highest (or lowest) Debye temperature and minimum thermal conductivity. The electronic density of states shows a strong hybridization of Pd-d with Sn-p electrons near the Fermi level, which has an important impact on the reliability of crystal. The three-dimensional (3D) charge density difference map shows ionic properties for these compounds, and the ionicity increases with Pd concentration according to the Bader charge analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Kim, S.B. Jung, and J.W. Yoon, Effects of a phosphorous-containing Pd layer in a thin-ENEPIG surface finish on the interfacial reactions and mechanical strength of a Sn-58Bi solder joint. J. Alloys Compd. 820, 153396 (2020).

    Article  CAS  Google Scholar 

  2. C.E. Ho, L.H. Hsu, C.H. Yang, T.C. Yeh, and P.T. Lee, Effect of Pd (P) thickness on the soldering reaction between Sn-3Ag-0.5 Cu alloy and ultrathin-Ni (P)-type Au/Pd (P)/Ni (P)/Cu metallization pad. Thin Solid Films 584, 257 (2015).

    Article  CAS  Google Scholar 

  3. Y.W. Yen, P.H. Tsai, Y.K. Fang, S.C. Lo, Y.P. Hsieh, and C.I. Lee, Interfacial reactions on Pb-free solders with Au/Pd/Ni/Cu multilayer substrates. J. Alloys Compd. 503, 25 (2010).

    Article  CAS  Google Scholar 

  4. J.W. Yoon, B.I. Noh, J.H. Yoon, H.B. Kang, and S.B. Jung, Sequential interfacial intermetallic compound formation of Cu6Sn5 and Ni3Sn4 between Sn-Ag-Cu solder and ENEPIG substrate during a reflow process. J. Alloys Compd. 509, 153 (2011).

    Article  Google Scholar 

  5. K. Zeng, R. Stierman, D. Abbott, and M. Murtuza, The root cause of black pad failure of solder joints with electroless Ni/immersion gold plating. JOM 58, 75 (2006).

    Article  CAS  Google Scholar 

  6. K. Suganuma and K.S. Kim, The root causes of the “black Pad” phenomenon and avoidance tactics. JOM 60, 61 (2008).

    Article  CAS  Google Scholar 

  7. S.P. Peng, W.H. Wu, C.E. Ho, and Y.M. Huang, Comparative study between Sn37Pb and Sn3Ag0.5Cu soldering with Au/Pd/Ni (P) tri-layer structure. J. Alloys Compd. 493, 431 (2010).

    Article  CAS  Google Scholar 

  8. Y.S. Wu, P.T. Lee, W.Z. Hsieh, T.T. Kuo, and C.E. Ho, Interfacial reaction and mechanical reliability between Sn-3Ag-0.5Cu alloy and ultrathin-Ni(P)-type Au/Pd(P)/Ni(P)/Cu metallization pad. Surf. Coat. Technol. 359, 374 (2019).

    Article  CAS  Google Scholar 

  9. C.Y. Lee, S.P. Yang, C.H. Yang, M.K. Lu, T.T. Kuo, and C.E. Ho, Influence of Pd(P) thickness on the Pd-free solder reaction between eutectic Sn-Ag alloy and Au/Pd(P)/Ni(P)/Cu multilayer. Surf. Coat. Technol. 395, 1 (2020).

    Article  Google Scholar 

  10. V. Simić and Z. Marinković, Room temperature interactions in Pd-metal thin film couples. Mater. Chem. Phys. 47, 246 (1997).

    Article  Google Scholar 

  11. M.A. Rahman, C.E. Ho, W. Gierlotka, and J.C. Kuo, Experimental determination and thermodynamic modeling of the Sn-Rich corner of the ternary Ni-Pd-Sn phase diagram at 250℃. J. Electron. Mater. 43, 4582 (2014).

    Article  CAS  Google Scholar 

  12. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, and D.D. Wagman, Selected Values of the Thermodynamic Properties of the Elements (OH: American Society for Metals, 1973).

    Google Scholar 

  13. K.L. Shelton, P.A. Merewether, and J. Skinner, Phases and phase relations in the system palladium-platinum-tin. Can. Mineral. 19, 599 (1981).

    CAS  Google Scholar 

  14. I.R. Harris, M. Norman, and A.W. Bryant, A study of some palladium-indium, platinum-indium and platinum-tin alloys. J. Less Common. Met. 16, 427 (1968).

    Article  CAS  Google Scholar 

  15. M.A. Kareva, E.G. Kabanova, G.P. Zhmurko, V.N. Kuznetsov, and A.V. Yatsenko, Phases of the NiAs family in Cu-Pd-Sn and Au-Pd-Sn systems. Russ. J. Inorg. Chem. 57, 502 (2012).

    Article  CAS  Google Scholar 

  16. T.B. Massalski, Binary Alloy Phase Diagrams (OH: American Society for Metals, 1990), pp. 3049–3051.

    Google Scholar 

  17. Y.L. Tian, L.F. Zhang, and P. Wu, First-principles study of structural, elastic, and thermodynamic properties of PdSn4 with Ni addition. J. Electron. Mater. 49, 1435 (2020).

    Article  CAS  Google Scholar 

  18. R. Kubiak and M. Wolcyrz, Refinement of the crystal structures of AuSn4 and PdSn4. J. Less Common Metals 97, 265 (1984).

    Article  CAS  Google Scholar 

  19. K. Schubert, H.L. Lukas, H.G. Meissner, and S. Bhan, Pd5Sn7—A novel binary stannide in Pd-Sn system. Z. Metallkd. 50, 534 (1959).

    CAS  Google Scholar 

  20. J. Nylén, F.G. Garcıa, B.D. Mosel, R. Pöttgen, and U. Häussermann, Structural relationships, phase stability and bonding of compounds PdSnn (n= 2, 3, 4). Solid State Sci. 6, 147 (2004).

    Article  Google Scholar 

  21. K. Schubert, H.L. Lukas, H.G. Meissner, and S. Bhan, Structure of the systems cobalt- gallium, palladium-gallium, palladium-tin, and related alloys. Z. Metallkd. 50, 534 (1959).

    CAS  Google Scholar 

  22. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  23. J.R. Guadagno and M.J. Pool, Liquid palladium-tin alloys. J. Phys. Chem. 72, 2535 (1968).

    Article  CAS  Google Scholar 

  24. A.W. Bryant, W.G. Bugden, and J.N. Pratt, Calorimetric and galvanic cell studies of the thermodynamic properties of palladium-tin alloys. Acta Metall. 18, 101 (1970).

    Article  CAS  Google Scholar 

  25. S.V. Meschel and O.J. Kleppa, Standard enthalpies of formation of some 3d, 4d and 5d transition-metal stannides by direct synthesis calorimetry. Thermochim. Acta 314, 205 (1998).

    Article  CAS  Google Scholar 

  26. H.-J. Schaller and H. Brodowsky, Thermodynamic Properties of Pd-Sn Alloys. Z. Metallkd. 69, 87 (1978).

    CAS  Google Scholar 

  27. Y.F. Wu, B. Wu, and Z.Y. Wei, Structural, half-metallic and elastic properties of the half-Heusler compounds NiMnM (M = Sb, As and Si) and IrMnAs from first-principles calculations. Intermetallics 53, 26 (2014).

    Article  Google Scholar 

  28. W. Zhou, L.J. Liu, B.L. Li, and P. Wu, Structural, elastic and electronic properties of intermetallics in the Pt-Sn system: a density functional investigation. Comput. Mater. Sci. 46, 921 (2009).

    Article  CAS  Google Scholar 

  29. W.C. Hua, Y.A. Liu, D.J. Li, and H.L. Jin, Structural, anisotropic elastic and electronic properties of Sr-Zn binary system intermetallic compounds: a first-principles study. Comput. Mater. Sci. 99, 381 (2015).

    Article  Google Scholar 

  30. J.L. Du, B. Wen, R. Melnik, and Y. Kawazoe, Phase stability, elastic and electronic properties of Cu-Zr binary system intermetallic compounds: a first-principles study. J. Alloys Compd. 588, 96 (2014).

    Article  CAS  Google Scholar 

  31. H.-C. Cheng, C.-F. Yu, and W.-H. Chen, First-principles density functional calculation of mechanical, thermodynamic and electronic properties of CuIn and Cu2In crystals. J. Alloys Compd. 546, 286 (2013).

    Article  CAS  Google Scholar 

  32. X. Zhang, C. Ying, Z. Li, and G. Shi, First-principles calculations of structural stability, elastic, dynamical and thermodynamic properties of SiGe, SiSn GeSn. Superlattices Microstruct. 52, 459 (2012).

    Article  CAS  Google Scholar 

  33. C.M. Li, S.M. Zeng, and Z.Q. Chen, First-principles calculations of elastic and thermodynamic properties of the four main intermetallic phases in Al-Zn-Mg-Cu alloys. Comp. Mater. Sci. 93, 210 (2014).

    Article  CAS  Google Scholar 

  34. M. Tao, Z.R. Wang, and C.X. Lan, Exploring phase stability, electronic and mechanical properties of Ce-Pb intermetallic compounds using first-principles calculations. J. Solid State Chem. 237, 385 (2016).

    Article  CAS  Google Scholar 

  35. S.I. Ranganathan and M. Ostoja-Starzewskl, Universal elastic anisotropy index. Phys. Rev. Lett. 101, 055504 (2008).

    Article  Google Scholar 

  36. J.Y. Wu, B. Zhang, and Y.Z. Zhan, Ab initio investigation into the structure and properties of Ir-Zr intermetallics for high-temperature structural applications. Comput. Mater. Sci. 131, 146 (2017).

    Article  CAS  Google Scholar 

  37. Y. Liu, X. Chong, Y. Jiang, R. Zhou, and J. Peng, Mechanical properties and electronic structures of Fe-Al intermetallic. Phys. B Condens. Matter 506, 1 (2017).

    Article  CAS  Google Scholar 

  38. D.R. Clarke and C.G. Levi, Materials design for the next generation thermal barrier coatings. Annu. Rev. Mater. Res. 33, 383 (2003).

    Article  CAS  Google Scholar 

  39. D.G. Cahill, S.K. Watson, and R.O. Pohl, Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131 (1992).

    Article  CAS  Google Scholar 

  40. Y.H. Duan, Y. Sun, and L. Lu, Thermodynamic properties and thermal conductivities of TiAl3-type intermetallics in Al-Pt-Ti system. Comput. Mater. Sci. 68, 229 (2013).

    Article  CAS  Google Scholar 

  41. H.C. Deng, Theoretical prediction of the structural, electronic, mechanical and thermodynamic properties of the binary α-As2Te3 and β-As2Te3. J. Alloys Compd. 656, 695 (2016).

    Article  CAS  Google Scholar 

  42. R.F.W. Bader, Atoms in Molecules: A Quantum Theory (New York: Oxford University Press, 1990).

    Google Scholar 

  43. G. Henkelman, A. Arnaldsson, and H. Jonsson, A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 254 (2006).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51572190), and the super computing resources were supplied by the High Performance Computing Center of Tianjin University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yali Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Jia, G. & Wu, P. First-Principles Study on the Structural, Elastic and Thermodynamic Properties of Binary Pd-Sn Compounds. J. Electron. Mater. 52, 1875–1887 (2023). https://doi.org/10.1007/s11664-022-10089-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10089-9

Keywords

Navigation