Skip to main content
Log in

First-Principles Study on the MAX Phases Ti n+1GaN n (n = 1,2, and 3)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have performed first-principles density functional theory calculations within generalized-gradient approximation to obtain the structural, mechanical, electronic, and dynamic properties of Ti n+1GaN n compounds. In order to examine the stability of these compounds, formation enthalpies, single-crystal elastic constants, and phonon dispersion curves were calculated. We show that all compounds are stable, while α-Ti4GaN3 is the most stable. The density of states calculations also demonstrate that all of the compounds are metallic. Additionally, bonding nature and related characteristics such as Mulliken atomic charges and bond overlap populations were investigated. Furthermore, thermodynamic properties were calculated by means of phonon dispersion curves. The results are compared in this work with available experimental values and theoretical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.W. Barsoum, Prog. Solid State Chem. 28, 201 (2000).

    Article  Google Scholar 

  2. Z.J. Yang, J. Li, R.F. Linghu, X.L. Cheng, and X.D. Yang, J. Alloys Comp. 574, 573 (2013).

    Article  Google Scholar 

  3. X. Hea, Y. Bai, Y. Li, C. Zhu, and M. Li, Solid State Commun. 149, 564 (2009).

    Article  Google Scholar 

  4. M.W. Barsoum, Physical Properties of the MAX Phases, Encyclopedia of Materials: Science and Technology (Amsterdam: Elsevier, 2006).

    Google Scholar 

  5. M. Dahlqvist, B. Alling, and J. Rosén, Phys. Rev. B. 81, 220102 (2010).

    Article  Google Scholar 

  6. V.J. Keast, S. Harris, and D.K. Smith, Phys. Rev. B 80, 214113 (2009).

    Article  Google Scholar 

  7. A. Bouhemadou, Solid State Sci. 11, 1875 (2009).

    Article  Google Scholar 

  8. B. Manoun, S. Kulkarni, N. Pathak, S.K. Saxena, S. Amini, and M.W. Barsoumb, J. Alloys Comp. 505, 328 (2010).

    Article  Google Scholar 

  9. I.R. Shein and A.L. Ivanovskii, Comput. Mater. Sci. 65, 104 (2012).

    Article  Google Scholar 

  10. P. Eklund, M. Beckers, U. Jansson, H. Högberg, and L. Hultman, Thin Solid Films 518, 1851 (2010).

    Article  Google Scholar 

  11. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, J. Phys. 14, 2717 (2002).

    Google Scholar 

  12. J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  Google Scholar 

  13. D.R. Hamann, M. Schlüter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).

    Article  Google Scholar 

  14. N. Troullier and J.L. Martins, Phys. Rev. B. 43, 1993 (1991).

    Article  Google Scholar 

  15. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  16. T.H. Fischer and J. Almlof, J. Phys. Chem. 96, 9768 (1992).

    Article  Google Scholar 

  17. J.H. Xu, T. Oguchi, and A.J. Freeman, Phys. Rev. B 35, 6940 (1987).

    Article  Google Scholar 

  18. J.H. Xu and A.J. Freeman, Phys. Rev. B 40, 11927 (1989).

    Article  Google Scholar 

  19. B. Montanari and N.M. Harrison, Chem. Phys. Lett. 364, 528 (2002).

    Article  Google Scholar 

  20. E. Deligoz, K. Colakoglu, and Y.O. Ciftci, J. Phys. Chem. Solids 68, 482 (2007).

    Article  Google Scholar 

  21. B.A. Auld, Acustic Fields and Waves in Solid, 1st ed. (New York: John Wiley & Sons, 1973), 391.

    Google Scholar 

  22. N.W. Ashcroft and N.D. Mermin, Solid State Physics, 1st ed. (Philadelphia: Saunders, 1976), 447.

    Google Scholar 

  23. J.F. Nye, Physical Properties of Crystals, 1st ed. (Oxford: Clarendon, 1957), 148.

    Google Scholar 

  24. Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, and J. Meng, Phys. Rev. B 76, 054115 (2007).

    Article  Google Scholar 

  25. P. Rong-Kai, M. Li, B. Nan, W. Ming-Hui, L. Peng-Bo, T. Bi-Yu, P. Li-Ming, and D. Wen-Jiang, Phys. Scr. 87, 015601 (2013).

    Article  Google Scholar 

  26. R. Hill, Proc. Phys. Soc. Lond. A 65, 349 (1952).

    Article  Google Scholar 

  27. M. Rajagopalan, S.P. Kumar, and R. Anuthama, Phys. B 405, 1817 (2010).

    Article  Google Scholar 

  28. N. Korozlu, K. Colakoglu, E. Deligoz, and S. Aydin, J. Alloys Comp. 546, 157 (2013).

    Article  Google Scholar 

  29. S.F. Pugh, Phil. Mag. Ser. 45, 823 (1954).

    Article  Google Scholar 

  30. V.V. Bannikov, I.R. Shein, and A.L. Ivanovskii, Phys. Stat. Sol. (RRL). 3, 89 (2007).

    Article  Google Scholar 

  31. X.Q. Chen, H. Niu, D. Li, and Y. Li, Intermetallics 19, 1275 (2011).

    Article  Google Scholar 

  32. S.D. Gironcoli, A.D. Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).

    Article  Google Scholar 

  33. P.K. Jha, Phys. Rev. B 72, 214502 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the State Planning Organization of Turkey under Grant No. 2011K120290. Some of the calculations were performed in the high performance computing center (HPCC) at Gazi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Engin Deligoz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surucu, G., Colakoglu, K., Deligoz, E. et al. First-Principles Study on the MAX Phases Ti n+1GaN n (n = 1,2, and 3). J. Electron. Mater. 45, 4256–4264 (2016). https://doi.org/10.1007/s11664-016-4607-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4607-1

Keywords

Navigation