Skip to main content
Log in

Post-Newtonian Limit of Hybrid Metric-Palatini f(R)-Gravity

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Using the latest most accurate values of post-Newtonian parameters γ and β obtained by MESSENGER we impose restrictions on the recently proposed hybrid f(R)-gravity model in its scalar–tensor representation. We show that the presence of a light scalar field in this theory does not contradict the experimental data based not only on the γ parameter (as was shown earlier), but also on all other PPN parameters. The application of parameterized post-Newtonian formalism to gravitational theories with massive fields is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. S. Perlmutter et al., Astrophys. J. 517, 565 (1999).

    Article  ADS  Google Scholar 

  2. A. G. Riess et al., Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  3. A. G. Riess et al., Astrophys. J. 607, 665 (2004).

    Article  ADS  Google Scholar 

  4. F. Zwicky, Helv. Phys. Acta 6, 110 (1933).

    ADS  Google Scholar 

  5. J. H. Oort, Bull. Astron. Inst. Netherlands 6, 249 (1932).

    ADS  Google Scholar 

  6. P. G. Bergmann, Int. J. Theor. Phys. 1, 25 (1968).

    Article  Google Scholar 

  7. A. De Felice and S. Tsujikawa, Living Rev. Rel. 13, 3 (2010).

    Article  Google Scholar 

  8. S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, Phys. Rep. 692, 1 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Nojiri and S. D. Odintsov, Phys. Rep. 505, 59 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  10. A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).

    Article  ADS  Google Scholar 

  11. S. Nojiri and S. D. Odintsov, Phys. Rev. D 68, 123512 (2003).

    Article  ADS  Google Scholar 

  12. F. Briscese, E. Elizalde, S. Nojiri, and S. D. Odintsov, Phys. Lett. B 646, 105 (2007).

    Article  ADS  Google Scholar 

  13. D. Saez-Gomez, Gen. Rel. Grav. 41, 1527 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Nojiri and S. D. Odintsov, Phys. Lett. B 657, 238 (2007).

    Article  ADS  Google Scholar 

  15. S. Nojiri and S. D. Odintsov, Phys. Rev. D 77, 026007 (2008).

    Article  ADS  Google Scholar 

  16. S. Nojiri, S. D. Odintsov, and D. Saez-Gomez, Phys. Lett. B 681, 74 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  17. G. Cognola, E. Elizalde, S. D. Odintsov, P. Tretyakov, and S. Zerbini, Phys. Rev. D 79, 044001 (2009).

    Article  ADS  Google Scholar 

  18. G. Cognola, E. Elizalde, S. Nojiri, S. D. Odintsov, L. Sebastiani, and S. Zerbini, Phys. Rev. D 77, 046009 (2008).

    Article  ADS  Google Scholar 

  19. S. D. Odintsov, D. Saez-Gomez, and G. S. Sharov, Eur. Phys. J. C 77, 862 (2017).

    Article  ADS  Google Scholar 

  20. S. Capozziello and M. Francaviglia, Gen. Rel. Grav. 40, 357 (2008).

    Article  ADS  Google Scholar 

  21. T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451 (2010).

    Article  ADS  Google Scholar 

  22. T. Chiba, Phys. Lett. B 575, 1 (2003).

    Article  ADS  Google Scholar 

  23. G. J. Olmo, Phys. Rev. Lett. 95, 261102 (2005).

    Article  ADS  Google Scholar 

  24. G. J. Olmo, Phys. Rev. D 75, 023511 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  25. J. Khoury and A. Weltman, Phys. Rev. Lett. 93, 171104 (2004).

    Article  ADS  Google Scholar 

  26. S. Capozziello and S. Tsujikawa, Phys. Rev. D 77, 107501 (2008).

    Article  ADS  Google Scholar 

  27. J. Khoury and A. Weltman, Phys. Rev. D 69, 044026 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  28. W. Hu and I. Sawicki, Phys. Rev. D 76, 064004 (2007).

    Article  ADS  Google Scholar 

  29. T. Koivisto and H. Kurki-Suonio, Class. Quant. Grav. 23, 2355 (2006).

    Article  ADS  Google Scholar 

  30. T. Koivisto, Phys. Rev. D 73, 083517 (2006).

    Article  ADS  Google Scholar 

  31. T. Harko, T. S. Koivisto, F. S. N. Lobo, and G. J. Olmo, Phys. Rev. D 85, 084016 (2012).

    Article  ADS  Google Scholar 

  32. C. G. Böhmer, F. S. N. Lobo, and N. Tamanini, Phys. Rev. D 88, 104019 (2013).

    Article  ADS  Google Scholar 

  33. N. A. Lima and V. Smer-Barreto, Astrophys. J. 818, 186 (2016).

    Article  ADS  Google Scholar 

  34. I. Leanizbarrutia, F. S. N. Lobo, and D. Sáez-Gómez, Phys. Rev. D 95, 084046 (2017).

    Article  ADS  Google Scholar 

  35. S. Capozziello, T. Harko, T. S. Koivisto, F. S. N. Lobo, and G. J. Olmo, J. Cosmol. Astropart. Phys. 04, 011 (2013).

    Article  Google Scholar 

  36. S. Capozziello, T. Harko, T. S. Koivisto, F. S. N. Lobo, and G. J. Olmo, J. Cosmol. Astropart. Phys. 07, 024 (2013).

  37. S. Capozziello, T. Harko, T. S. Koivisto, F. S. N. Lobo, and G. J. Olmo, Astropart. Phys. 5052C, 65 (2013).

  38. S. Capozziello, T. Harko, T. S. Koivisto, F. S. N. Lobo, and G. J. Olmo, Phys. Rev. D 86, 127504 (2012).

    Article  ADS  Google Scholar 

  39. B. Danila, T. Harko, F. S. N. Lobo, and M. K. Mak, Phys. Rev. D 95, 044031 (2017).

    Article  ADS  Google Scholar 

  40. S. Capozziello, T. Harko, T. S. Koivisto, F. S. N. Lobo, and G. J. Olmo, Universe 1, 199 (2015).

    Article  ADS  Google Scholar 

  41. C. M. Will, Phys. Rev. Lett. 120, 191101 (2018).

    Article  ADS  Google Scholar 

  42. A. Fienga, J. Laskar, P. Kuchynka, H. Manche, G. Desvignes, M. Gastineau, I. Cognard, and G. Theureau, Celest. Mech. Dyn. Astron. 111, 363 (2011).

    Article  ADS  Google Scholar 

  43. A. Verma, A. Fienga, J. Laskar, H. Manche, and M. Gastineau, Astron. Astrophys. 561, A115 (2014).

    Article  ADS  Google Scholar 

  44. A. Fienga, J. Laskar, P. Exertier, H. Manche, and M. Gastineau, Celest. Mech. Dyn. Astron. 123, 325 (2015).

    Article  ADS  Google Scholar 

  45. K. Nordtvedt, Phys. Rev. 169, 1017 (1968).

    Article  ADS  Google Scholar 

  46. C. M. Will, Astrophys. J. 163, 611 (1971).

    Article  ADS  MathSciNet  Google Scholar 

  47. C. M. Will and K. Nordtvedt, Astrophys. J. 177, 757 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  48. C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge Univ. Press, Cambridge, UK, 1993).

    Book  MATH  Google Scholar 

  49. J. Alsing, E. Berti, C. M. Will, and H. Zaglauer, Phys. Rev. D 85, 064041 (2012).

    Article  ADS  Google Scholar 

  50. T. Helbig, Astrophys. J. 382, 223 (1991).

    Article  ADS  Google Scholar 

  51. L. Perivolaropoulos, Phys. Rev. D 81, 047501 (2010).

    Article  ADS  Google Scholar 

  52. Y. Nutku, Astrophys. J. 155, 999 (1969).

    Article  ADS  Google Scholar 

  53. B. Bertotti, L. Iess, and P. Tortora, Nature (London, U.K.) 425, 374 (2003).

    Article  ADS  Google Scholar 

  54. C. M. Will, Living Rev. Rel. 17, 4 (2014).

    Article  Google Scholar 

  55. T. P. Sotiriou and E. Barausse, Phys. Rev. D 75, 084007 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  56. D. L. Lee, Phys. Rev. D 10, 2374 (1974).

    Article  ADS  Google Scholar 

  57. E. Poisson and C. M. Will, Gravity: Newtonian, Post-Newtonian, Relativistic (Cambridge Univ. Press, Cambridge, UK, 2014).

    Book  MATH  Google Scholar 

  58. R. S. Park, W. M. Folkner, A. S. Konopliv, J. G. Williams, D. E. Smith, and M. T. Zuber, Astron. J. 153, 121 (2017).

    Article  ADS  Google Scholar 

  59. P. J. Mohr, D. B. Newell, and B. N. Taylor, Rev. Mod. Phys. 88, 035009 (2016).

    Article  ADS  Google Scholar 

  60. P. I. Dyadina, N. A. Avdeev, and S. O. Alexeyev, Mon. Not. R. Astron. Soc. 483, 947 (2019).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank N.A. Avdeev and V.V. Kolybasova for discussions and comments on the topics of this paper.

Funding

This work was supported by the grant 18-32-00785 from Russian Foundation for Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. I. Dyadina, S. P. Labazova or S. O. Alexeyev.

Appendices

POINT-MASS AND PERFECT FLUID PPN METRIC

Point-mass metric [47]:

$$\begin{gathered} {{g}_{{00}}} = - 1 + 2{{\sum\limits_k^{} {\frac{G}{{{{c}^{2}}}}\frac{{{{m}_{k}}}}{{{{r}_{k}}}} - 2\beta \left( {\sum\limits_k^{} {\frac{G}{{{{c}^{2}}}}\frac{{{{m}_{k}}}}{{{{r}_{k}}}}} } \right)} }^{2}} \\ + \,2(1 - 2\beta + {{\zeta }_{2}})\sum\limits_k^{} {\frac{G}{{{{c}^{2}}}}\frac{{{{m}_{k}}}}{{{{r}_{k}}}}\sum\limits_{j \ne k}^{} {\frac{G}{{{{c}^{2}}}}\frac{{{{m}_{j}}}}{{{{r}_{{jk}}}}}} } \\ \, + (2\gamma + 1 + {{\alpha }_{3}} + {{\zeta }_{1}})\sum\limits_k^{} {\frac{G}{{{{c}^{4}}}}\frac{{{{m}_{k}}{v}_{k}^{2}}}{{{{r}_{k}}}}} \\ \, - {{\zeta }_{1}}\sum\limits_k^{} {\frac{G}{{{{c}^{4}}}}\frac{{{{m}_{k}}}}{{r_{k}^{3}}}{{{({{{\mathbf{v}}}_{k}} \cdot {{{\mathbf{r}}}_{k}})}}^{2}} - ({{\alpha }_{1}} - {{\alpha }_{2}} - {{\alpha }_{3}}){{w}^{2}}} \\ \, \times \sum\limits_k^{} {\frac{G}{{{{c}^{4}}}}\frac{{{{m}_{k}}}}{{r_{k}^{3}}}} - {{\alpha }_{2}}\sum\limits_k^{} {\frac{G}{{{{c}^{4}}}}\frac{{{{m}_{k}}}}{{{{r}_{k}}}}} {{({\mathbf{w}} \cdot {{{\mathbf{r}}}_{k}})}^{2}} \\ \end{gathered} $$
$$\, + 2{{\alpha }_{3}} - {{\alpha }_{1}})\sum\limits_k^{} {\frac{G}{{{{c}^{4}}}}\frac{{{{m}_{k}}}}{{{{r}_{k}}}}} ({\mathbf{w}} \cdot {{{\mathbf{v}}}_{k}}),$$
((34))
$$\begin{gathered} {{g}_{{0j}}} = - \frac{1}{2}(4\gamma + 3 + {{\alpha }_{1}} - {{\alpha }_{2}} + {{\zeta }_{1}})\sum\limits_k^{} {\frac{G}{{{{c}^{3}}}}\frac{{{{m}_{k}}{v}_{k}^{j}}}{{{{r}_{k}}}}} \\ - \frac{1}{2}(1 + {{\alpha }_{2}} - {{\zeta }_{1}})\sum\limits_k^{} {\frac{G}{{{{c}^{3}}}}\frac{{{{m}_{k}}}}{{r_{k}^{3}}}({{{\mathbf{v}}}_{k}} \cdot {{{\mathbf{r}}}_{k}})r_{k}^{j}} \\ - \frac{1}{2}({{\alpha }_{1}} - 2{{\alpha }_{2}}){{w}^{j}}\sum\limits_k^{} {\frac{G}{{{{c}^{3}}}}\frac{{{{m}_{k}}}}{{{{r}_{k}}}}} + {{\alpha }_{2}}\sum\limits_k^{} {\frac{G}{{{{c}^{3}}}}\frac{{{{m}_{k}}}}{{r_{k}^{3}}}({\mathbf{w}} \cdot {{{\mathbf{r}}}_{k}})r_{k}^{j},} \\ {{g}_{{ij}}} = \left( {1 + 2\gamma \sum\limits_k^{} {\frac{G}{{{{c}^{3}}}}\frac{{{{m}_{k}}}}{{{{r}_{k}}}}} } \right){{\delta }_{{ij}}}, \\ \end{gathered} $$

here wi is coordinate velocity of PPN coordinate system relative to the mean rest frame of the universe.

Perfect fluid metric [57]:

$$\begin{gathered} {{g}_{{00}}} = - 1 + 2\frac{1}{{{{c}^{2}}}}U - 2\beta \frac{1}{{{{c}^{4}}}}{{U}^{2}} \\ \, + (2\gamma + 1 + {{\alpha }_{3}} + {{\zeta }_{1}} - 2\xi )\frac{1}{{{{c}^{4}}}}{{\Phi }_{1}} \\ \, - 2(2\beta - 1 - {{\zeta }_{2}} - \xi )\frac{1}{{{{c}^{4}}}}{{\Phi }_{2}} + 2(1 + {{\zeta }_{3}})\frac{1}{{{{c}^{4}}}}{{\Phi }_{3}} \\ \end{gathered} $$
$$\begin{gathered} \, + \frac{1}{{{{c}^{4}}}}{{\Phi }^{{{\text{PF}}}}} + 2(3\gamma + 3{{\zeta }_{4}} - 2\xi )\frac{1}{{{{c}^{4}}}}{{\Phi }_{4}} \\ \, - ({{\zeta }_{1}} - 2\xi )\frac{1}{{{{c}^{4}}}}{{\Phi }_{6}} - 2\xi \frac{1}{{{{c}^{4}}}}{{\Phi }_{W}}, \\ \end{gathered} $$
((35))
$$\begin{gathered} {{g}_{{0j}}} = - \frac{1}{2}(4\gamma + 3 + {{\alpha }_{1}} - {{\alpha }_{2}} + {{\zeta }_{1}} - 2\xi )\frac{1}{{{{c}^{3}}}}{{V}_{j}} \\ - \frac{1}{2}(1 + {{\alpha }_{2}} - {{\zeta }_{1}} + 2\xi )\frac{1}{{{{c}^{3}}}}{{W}_{j}} + \frac{1}{{{{c}^{3}}}}\Phi _{j}^{{{\text{PF}}}}, \\ \end{gathered} $$
$${{g}_{{ij}}} = \left( {1 + 2\gamma \frac{1}{{{{c}^{2}}}}U} \right){{\delta }_{{ij}}},$$

where PPN potentials are represented

$$\begin{gathered} U = \int {G\frac{{\rho {\kern 1pt} '}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}} d{\mathbf{r}}{\kern 1pt} ',\quad {{\Phi }_{1}} = \int {G\frac{{\rho {\kern 1pt} '{v}{\kern 1pt} {{'}^{2}}}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}} d{\mathbf{r}}{\kern 1pt} ', \\ {{\Phi }_{2}} = \int {G\frac{{\rho {\kern 1pt} 'U{\kern 1pt} '}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}} d{\mathbf{r}}{\kern 1pt} ',\quad {{\Phi }_{3}} = \int {G\frac{{\rho {\kern 1pt} '\Pi {\kern 1pt} '}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}} d{\mathbf{r}}{\kern 1pt} ', \\ {{\Phi }_{4}} = \int {G\frac{{p{\kern 1pt} '}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}} d{\mathbf{r}}{\kern 1pt} ',\quad {{V}_{j}} = \int {G\frac{{\rho {{{v}}_{j}}}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}} d{\mathbf{r}}{\kern 1pt} ', \\ \end{gathered} $$
$$\begin{gathered} {{\Phi }_{6}} = \int {G\rho {\kern 1pt} '} {v}_{j}^{'}{v}_{k}^{'}\frac{{{{{(r - r{\kern 1pt} ')}}^{j}}{{{(r - r{\kern 1pt} ')}}^{k}}}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{{{\text{|}}}^{3}}}}d{\mathbf{r}}{\kern 1pt} ', \\ \Phi _{j}^{{{\text{PF}}}} = - \frac{1}{2}{{\alpha }_{1}}{{w}_{j}}U + {{\alpha }_{2}}{{w}^{i}}{{U}_{{ij}}}, \\ \end{gathered} $$
((36))
$$\begin{gathered} {{\Phi }_{W}} = \int {{{G}^{2}}\rho {\kern 1pt} '\rho {\kern 1pt} ''\frac{{{{{(r - r{\kern 1pt} ')}}_{j}}}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{{{\text{|}}}^{3}}}}} \left[ {\frac{{{{{(r{\kern 1pt} '\, - r{\kern 1pt} '')}}^{j}}}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} ''{\text{|}}}} - \frac{{{{{(r - r{\kern 1pt} '')}}^{j}}}}{{{\text{|}}{\mathbf{r}}{\kern 1pt} '\, - {\mathbf{r}}{\kern 1pt} ''{\text{|}}}}} \right]d{\mathbf{r}}{\kern 1pt} '{\kern 1pt} d{\mathbf{r}}{\kern 1pt} '', \\ {{W}_{j}} = \int {G\frac{{\rho {\kern 1pt} '{\kern 1pt} {\mathbf{v}}{\kern 1pt} '({\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '){{{(r - r{\kern 1pt} '{\kern 1pt} )}}_{j}}}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{{{\text{|}}}^{3}}}}d{\mathbf{r}}{\kern 1pt} ',} \\ {{U}_{{ij}}} = \int {G\frac{{\rho {\kern 1pt} '{\kern 1pt} {\mathbf{v}}{\kern 1pt} '{{{(r - r{\kern 1pt} '{\kern 1pt} )}}_{i}}{{{(r - r{\kern 1pt} '{\kern 1pt} )}}_{j}}}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}d{\mathbf{r}}{\kern 1pt} ',} \\ {{\Phi }^{{{\text{PF}}}}} = ({{\alpha }_{3}} - {{\alpha }_{1}}){{w}^{2}}U + {{\alpha }_{2}}{{w}^{j}}{{w}^{i}}{{U}_{{ij}}} + (2{{\alpha }_{3}} - {{\alpha }_{1}}){{w}^{j}}{{V}_{j}}. \\ \end{gathered} $$

Here “PF”-potentials are responsible for preferred frames effects.

THE PERFECT FLUID METRIC OF THE HYBRID f(R)-GRAVITY

The perfect fluid metric of hybrid f(R)-gravity:

$$\begin{gathered} {{g}_{{00}}} = - 1 + \frac{{{{k}^{2}}}}{{4\pi (1 + {{\phi }_{0}}){{c}^{2}}}}\int {\frac{{\rho {\kern 1pt} '}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}} \\ \times \,\,\left( {1 - \frac{{{{\phi }_{0}}}}{3}{{e}^{{ - {{m}_{\varphi }}{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}}} \right)d{\mathbf{r}}{\kern 1pt} '\, - \frac{{{{k}^{4}}}}{{32{{\pi }^{2}}{{{(1 + {{\phi }_{0}})}}^{2}}{{c}^{4}}}} \\ \end{gathered} $$
$$\begin{gathered} \times \int {\frac{{\rho {\kern 1pt} '}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}} \left( {1\, - \,\frac{{{{\phi }_{0}}}}{3}{{e}^{{ - {{m}_{\varphi }}{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}}} \right)\frac{{\rho {\kern 1pt} ''}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} ''{\text{|}}}}\left( {1\, - \,\frac{{{{\phi }_{0}}}}{3}{{e}^{{ - {{m}_{\varphi }}{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} ''{\text{|}}}}}} \right)d{\mathbf{r}}{\kern 1pt} ''{\kern 1pt} d{\mathbf{r}}{\kern 1pt} ' \\ + \frac{{{{k}^{4}}}}{{32{{\pi }^{2}}{{{(1 + {{\phi }_{0}})}}^{2}}{{c}^{4}}}}\frac{{{{\phi }_{0}}(1 + {{\phi }_{0}})}}{{18}} \\ \end{gathered} $$
$$\begin{gathered} \, \times \int {\frac{{\rho {\kern 1pt} '}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}} {{e}^{{ - {{m}_{\varphi }}{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}}\frac{{\rho {\kern 1pt} ''}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} ''{\text{|}}}}{{e}^{{ - {{m}_{\varphi }}{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} ''{\text{|}}}}}d{\mathbf{r}}{\kern 1pt} ''{\kern 1pt} d{\mathbf{r}}{\kern 1pt} ' \\ + \frac{{{{k}^{2}}}}{{4\pi (1 + {{\phi }_{0}}){{c}^{4}}}}\int {\frac{{\Pi {\kern 1pt} '{\kern 1pt} \rho {\kern 1pt} '}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}\left( {1 - \frac{{{{\phi }_{0}}}}{3}{{e}^{{ - {{m}_{\varphi }}{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}}} \right)d{\mathbf{r}}{\kern 1pt} '} \\ \end{gathered} $$
$$\begin{gathered} \, + \frac{{{{k}^{2}}}}{{2\pi (1 + {{\phi }_{0}}){{c}^{4}}}}\int {\frac{{\rho {\kern 1pt} '{\kern 1pt} {v}{\kern 1pt} {{'}^{2}}}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}} d{\mathbf{r}}{\kern 1pt} '\, + \frac{{3{{k}^{2}}}}{{4\pi (1 + {{\phi }_{0}}){{c}^{4}}}} \\ \, \times \int {\frac{{p{\kern 1pt} '}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}} \left( {1 + \frac{{{{\phi }_{0}}}}{3}{{e}^{{ - {{m}_{\varphi }}{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}}} \right)d{\mathbf{r}}{\kern 1pt} ' \\ \end{gathered} $$
$$\begin{gathered} + \frac{{{{k}^{2}}}}{{32\pi (1 + {{\phi }_{0}}){{c}^{4}}}}\int {\frac{{\rho {\kern 1pt} '}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}} \left[ {1 - \frac{{{{\phi }_{0}}}}{3}{{e}^{{ - {{m}_{\varphi }}{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}}} \right]d{\mathbf{r}}{\kern 1pt} ' \\ \, \times \int {\frac{{\hat {\rho }}}{{{\text{|}}{\mathbf{r}}{\kern 1pt} '\, - {\mathbf{\hat {r}}}{\text{|}}}}} \left( {1 - \frac{{{{\phi }_{0}}}}{3}{{e}^{{ - {{m}_{\varphi }}{\text{|}}{\mathbf{r}}{\kern 1pt} '\, - {\mathbf{\hat {r}}}{\text{|}}}}}} \right)d{\mathbf{\hat {r}}} \\ \end{gathered} $$
$$\begin{gathered} + \frac{{3{{k}^{4}}}}{{32{{\pi }^{2}}{{{(1 + {{\phi }_{0}})}}^{2}}{{c}^{4}}}}\int {\frac{{\rho {\kern 1pt} '}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}} \left[ {1 - \frac{{{{\phi }_{0}}}}{3}{{e}^{{ - {{m}_{\varphi }}{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}}} \right]d{\mathbf{r}}{\kern 1pt} ' \\ \, \times \int {\frac{{\hat {\rho }}}{{{\text{|}}{\mathbf{r}}{\kern 1pt} '\, - {\mathbf{\hat {r}}}{\text{|}}}}} \left( {1 + \frac{{{{\phi }_{0}}}}{3}{{e}^{{ - {{m}_{\varphi }}{\text{|}}{\mathbf{r}}{\kern 1pt} '\, - {\mathbf{\hat {r}}}{\text{|}}}}}} \right)d{\mathbf{\hat {r}}} \\ \end{gathered} $$
$$\begin{gathered} - \frac{{{{k}^{4}}}}{{16{{\pi }^{2}}{{{(1 + {{\phi }_{0}})}}^{2}}{{c}^{4}}}}\int {\frac{{\rho {\kern 1pt} '}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}} \left[ {1 - \frac{{{{\phi }_{0}}}}{3}{{e}^{{ - {{m}_{\varphi }}{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}}} \right]d{\mathbf{r}}{\kern 1pt} ' \\ \, \times \int {\frac{{\hat {\rho }}}{{{\text{|}}{\mathbf{r}}{\kern 1pt} '\, - {\mathbf{\hat {r}}}{\text{|}}}}} \left( {1 - \frac{{{{\phi }_{0}}}}{3}{{e}^{{ - {{m}_{\varphi }}{\text{|}}{\mathbf{r}}{\kern 1pt} '\, - {\mathbf{\hat {r}}}{\text{|}}}}}} \right)d{\mathbf{\hat {r}}} \\ \end{gathered} $$
$$\begin{gathered} + \frac{{{{k}^{4}}}}{{16{{\pi }^{2}}{{{(1 + {{\phi }_{0}})}}^{2}}{{c}^{4}}}}\frac{{{{\phi }_{0}}(1 + {{\phi }_{0}})}}{{18}}\int {\frac{{\rho {\kern 1pt} '}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}} {{e}^{{ - {{m}_{\varphi }}{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}}d{\mathbf{r}}{\kern 1pt} ' \\ \, \times \int {\frac{{\hat {\rho }}}{{{\text{|}}{\mathbf{r}}{\kern 1pt} '\, - {\mathbf{\hat {r}}}{\text{|}}}}} {{e}^{{ - {{m}_{\varphi }}{\text{|}}{\mathbf{r}}{\kern 1pt} '\, - {\mathbf{\hat {r}}}{\text{|}}}}}d{\mathbf{\hat {r}}} \\ \end{gathered} $$
$$\begin{gathered} + \frac{{(7{{\phi }_{0}} + 1){{k}^{4}}{{\phi }_{0}}}}{{2304{{\pi }^{3}}{{{(1 + {{\phi }_{0}})}}^{2}}{{c}^{4}}}}m_{\varphi }^{2}\int {\frac{{{{e}^{{ - {{m}_{\varphi }}|{\mathbf{r}} - {\mathbf{r}}'|}}}}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}d{\mathbf{r}}{\kern 1pt} '} \\ \times \left( {\int {\frac{{\hat {\rho }}}{{{\text{|}}{\mathbf{r}}{\kern 1pt} '\, - {\mathbf{\hat {r}}}{\text{|}}}}{{e}^{{ - {{m}_{\varphi }}{\text{|}}{\mathbf{r}}{\kern 1pt} '\, - {\mathbf{\hat {r}}}{\text{|}}}}}\frac{{\rho {\kern 1pt} ''}}{{{\text{|}}{\mathbf{r}}{\kern 1pt} '\, - {\mathbf{r}}{\kern 1pt} ''{\text{|}}}}{{e}^{{ - {{m}_{\varphi }}{\text{|}}{\mathbf{r}}{\kern 1pt} '\, - {\mathbf{r}}{\kern 1pt} ''{\text{|}}}}}d{\mathbf{\hat {r}}}d{\mathbf{r}}{\kern 1pt} ''} } \right) \\ \end{gathered} $$
((37))
$$\begin{gathered} + \frac{{{{k}^{4}}{{\phi }_{0}}}}{{192{{\pi }^{3}}{{{(1 + {{\phi }_{0}})}}^{2}}{{c}^{4}}}}{{m}_{\varphi }}\int {\frac{{{{e}^{{ - {{m}_{\varphi }}|{\mathbf{r}} - {\mathbf{r}}'|}}}}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}d{\mathbf{r}}{\kern 1pt} '} \\ \times \left( {\int {\frac{{\hat {\rho }}}{{{\text{|}}{\mathbf{r}}{\kern 1pt} '\, - {\mathbf{\hat {r}}}{\text{|}}}}{{e}^{{ - {{m}_{\varphi }}{\text{|}}{\mathbf{r}}{\kern 1pt} '\, - {\mathbf{\hat {r}}}{\text{|}}}}}\frac{{\rho {\kern 1pt} ''}}{{{\text{|}}{\mathbf{r}}{\kern 1pt} '\, - {\mathbf{r}}{\kern 1pt} ''{\text{|}}}}{{e}^{{ - {{m}_{\varphi }}{\text{|}}{\mathbf{r}}{\kern 1pt} '\, - {\mathbf{r}}{\kern 1pt} ''{\text{|}}}}}d{\mathbf{\hat {r}}}d{\mathbf{r}}{\kern 1pt} ''} } \right) \\ \end{gathered} $$
$$\begin{gathered} + \frac{{{{k}^{4}}\phi _{0}^{2}}}{{1728{{\pi }^{3}}{{c}^{4}}}}\left[ {V{\kern 1pt} ''\, - \frac{{{{\phi }_{0}}}}{2}V{\kern 1pt} '''} \right]\int {\frac{{{{e}^{{ - {{m}_{\varphi }}|{\mathbf{r}} - {\mathbf{r}}'|}}}}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}d{\mathbf{r}}{\kern 1pt} '} \\ \times \left( {\int {\frac{{\hat {\rho }}}{{{\text{|}}{\mathbf{r}}{\kern 1pt} '\, - {\mathbf{\hat {r}}}{\text{|}}}}{{e}^{{ - {{m}_{\varphi }}{\text{|}}{\mathbf{r}}{\kern 1pt} '\, - {\mathbf{\hat {r}}}{\text{|}}}}}\frac{{\rho {\kern 1pt} ''}}{{{\text{|}}{\mathbf{r}}{\kern 1pt} '\, - {\mathbf{r}}{\kern 1pt} ''{\text{|}}}}{{e}^{{ - {{m}_{\varphi }}{\text{|}}{\mathbf{r}}{\kern 1pt} '\, - {\mathbf{r}}{\kern 1pt} ''{\text{|}}}}}d{\mathbf{\hat {r}}}d{\mathbf{r}}{\kern 1pt} ''} } \right), \\ \end{gathered} $$
$$\begin{gathered} {{g}_{{0i}}} = - \frac{{{{k}^{2}}}}{{4\pi (1 + {{\phi }_{0}}){{c}^{3}}}}\int {\frac{{\rho {\kern 1pt} '{\kern 1pt} {v}_{i}^{'}}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}} \left( {1 + \frac{{{{\phi }_{0}}}}{3}{{e}^{{ - {{m}_{\varphi }}{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}}} \right)d{\mathbf{r}}{\kern 1pt} ' \\ - \frac{{3{{k}^{2}}}}{{16\pi (1 + {{\phi }_{0}}){{c}^{3}}}}\int {\frac{{\rho {\kern 1pt} '{\kern 1pt} {v}_{i}^{'}}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}} \left( {1 - \frac{{{{\phi }_{0}}}}{3}{{e}^{{ - {{m}_{\varphi }}{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}}} \right)d{\mathbf{r}}{\kern 1pt} ' \\ - \frac{{{{k}^{2}}}}{{16\pi (1 + {{\phi }_{0}}){{c}^{3}}}}\int {\frac{{\rho {\kern 1pt} '{\kern 1pt} x_{i}^{'}({\mathbf{v}}{\kern 1pt} '\, \cdot {\mathbf{r}}{\kern 1pt} ')}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{{{\text{|}}}^{3}}}}\left[ {1 - \frac{{{{\phi }_{0}}}}{3}{{e}^{{ - {{m}_{\varphi }}{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}}} \right]} d{\mathbf{r}}, \\ \end{gathered} $$
$$\begin{gathered} {{g}_{{ij}}} = {{\delta }_{{ij}}}\left( {1 + \frac{{{{k}^{2}}}}{{4\pi (1 + {{\phi }_{0}}){{c}^{2}}}}} \right. \\ \left. {\, \times \int {\frac{{\rho {\kern 1pt} '}}{{{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}\left( {1 + \frac{{{{\phi }_{0}}}}{3}{{e}^{{ - {{m}_{\varphi }}{\text{|}}{\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '{\text{|}}}}}} \right)d{\mathbf{r}}{\kern 1pt} '} } \right). \\ \end{gathered} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyadina, P.I., Labazova, S.P. & Alexeyev, S.O. Post-Newtonian Limit of Hybrid Metric-Palatini f(R)-Gravity. J. Exp. Theor. Phys. 129, 838–848 (2019). https://doi.org/10.1134/S1063776119110025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119110025

Navigation