Skip to main content
Log in

Extended theories of gravity and their cosmological and astrophysical applications

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Astrophysical observations are pointing out huge amounts of “dark matter” and “dark energy” needed to explain the observed large scale structure and cosmic dynamics. The emerging picture is a spatially flat, homogeneous Universe undergoing the today observed accelerated phase. Despite of the good quality of astrophysical surveys, commonly addressed as Precision Cosmology, the nature and the nurture of dark energy and dark matter, which should constitute the bulk of cosmological matter-energy, are still unknown. Furthermore, up to now, no experimental evidence has been found, at fundamental level, to explain such mysterious components. The problem could be completely reversed considering dark matter and dark energy as “shortcomings” of General Relativity in its simplest formulation (a linear theory in the Ricci scalar R, minimally coupled to the standard perfect fluid matter) and claiming for the “correct” theory of gravity as that derived by matching the largest number of observational data, without imposing any theory a priori. As a working hypothesis, accelerating behavior of cosmic fluid, large scale structure, potential of galaxy clusters, rotation curves of spiral galaxies could be reproduced by means of extending the standard theory of General Relativity. In other words, gravity could acts in different ways at different scales and the above “shortcomings” could be due to incorrect extrapolations of the Einstein gravity, actually tested at short scales and low energy regimes. After a survey of what is intended for Extended Theories of Gravity in the so called “metric” and “Palatini” approaches, we discuss some cosmological and astrophysical applications where the issues related to the dark components are addressed by enlarging the Einstein theory to more general f (R) Lagrangians, where f (R) is a generic function of Ricci scalar R, not assumed simply linear. Obviously, this is not the final answer to the problem of “dark-components” but it can be considered as an operative scheme whose aim is to avoid the addition of unknown exotic ingredients to the cosmic pie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weinberg S. (1972). Gravitation and Cosmology. Wiley, New York

    Google Scholar 

  2. Guth A. (1981). Phys. Rev. D 23: 347

    ADS  Google Scholar 

  3. Buchbinder I.L., Odintsov S.D. and Shapiro I.L. (1992). Effective Action in Quantum Gravity. IOP Publishing, Bristol

    Google Scholar 

  4. Bondi H. (1952). Cosmology. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  5. Brans C. and Dicke R.H. (1961). Phys. Rev. 124: 925

    MATH  ADS  MathSciNet  Google Scholar 

  6. Capozziello S., de Ritis R., Rubano C. and Scudellaro P. (1996). La Rivista del Nuovo Cimento 4: 1

    Google Scholar 

  7. Sciama D.W. (1953). Mon. Not. R. Aston. Soc. 113: 34

    MATH  ADS  MathSciNet  Google Scholar 

  8. Birrell N.D. and Davies P.C.W. (1982). Quantum Fields in Curved Space. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  9. Vilkovisky G. (1992). Class. Quantum Grav. 9: 895

    ADS  MathSciNet  Google Scholar 

  10. Gasperini M. and Veneziano G. (1992). Phys. Lett. 277: 256

    MathSciNet  Google Scholar 

  11. Magnano G., Ferraris M. and Francaviglia M. (1987). Gen. Relativ. Gravit. 19: 465

    MATH  ADS  MathSciNet  Google Scholar 

  12. Barrow J. and Ottewill A.C. (1983). J. Phys. A: Math. Gen. 16: 2757

    ADS  MathSciNet  Google Scholar 

  13. Starobinsky A.A. (1980). Phys. Lett. 91: 99

    Google Scholar 

  14. Duruisseau J.P. and Kerner R. (1983). Gen. Rel. Grav. 15: 797–807

    ADS  MathSciNet  Google Scholar 

  15. La D. and Steinhardt P.J. (1989). Phys. Rev. Lett. 62: 376

    ADS  Google Scholar 

  16. Teyssandier P. and Tourrenc Ph. (1983). J. Math. Phys. 24: 2793

    MATH  ADS  MathSciNet  Google Scholar 

  17. Maeda K. (1989). Phys. Rev. D 39: 3159

    ADS  MathSciNet  Google Scholar 

  18. Wands D. (1994). Class. Quantum Grav. 11: 269

    ADS  MathSciNet  Google Scholar 

  19. Capozziello S., de Ritis R. and Marino A.A. (1998). Gen. Relativ. Gravit. 30: 1247

    MATH  ADS  MathSciNet  Google Scholar 

  20. Gottlöber S., Schmidt H.-J. and Starobinsky A.A. (1990). Class. Quantum Grav. 7: 893

    MATH  ADS  Google Scholar 

  21. Ruzmaikina T.V. and Ruzmaikin A.A. (1970). JETP 30: 372

    ADS  Google Scholar 

  22. Amendola L., Battaglia-Mayer A., Capozziello S., Gottlöber S., Müller V., Occhionero F. and Schmidt H.-J. (1993). Class. Quantum Grav. 10: L43

    MATH  ADS  Google Scholar 

  23. Battaglia-Mayer A. and Schmidt H.-J. (1993). Class. Quantum Grav. 10: 2441

    ADS  Google Scholar 

  24. Schmidt H.-J. (1990). Class. Quantum Grav. 7: 1023

    MATH  ADS  Google Scholar 

  25. Capozziello S., Nojiri S. and Odintsov S.D. (2006). Phys. Lett. B 634: 93

    ADS  Google Scholar 

  26. Amendola L., Capozziello S., Litterio M. and Occhionero F. (1992). Phys. Rev. D 45: 417

    ADS  MathSciNet  Google Scholar 

  27. Perlmutter S., et al. (1999). Astrophys. J. 517: 565

    ADS  Google Scholar 

  28. Knop R.A., et al. (2003). Astrophys. J. 598: 102

    ADS  Google Scholar 

  29. Riess A.G., et al. (1998). Astrophys. J. 116: 1009

    Google Scholar 

  30. Tonry J.L., et al. (2003). Astrophys. J. 594: 1

    ADS  Google Scholar 

  31. de Bernardis P., et al. (2000). Nature 404: 955

    ADS  Google Scholar 

  32. Stompor R., et al. (2001). Astrophys. J. 561: L7

    ADS  Google Scholar 

  33. Spergel D.N., et al. (2003). Astrophys. J. 148: 175

    Google Scholar 

  34. Hinshaw G., et al. (2003). Astrophys. J. 148: 135

    Google Scholar 

  35. Spergel, D.N., et al.: astro-ph/0603449 (2006)

  36. Riess A.G., et al. (2004). Astrophys. J. 607: 665

    ADS  Google Scholar 

  37. Sahni V. and Starobinski A. (2000). Int. J. Mod. Phys. D 9: 373

    ADS  Google Scholar 

  38. Padmanabhan T. (2003). Phys. Rept. 380: 235

    MATH  ADS  MathSciNet  Google Scholar 

  39. Copeland E.J., Sami M. and Tsujikawa S. (2006). Int. J. Mod. Phys. D 15: 1753

    MATH  ADS  MathSciNet  Google Scholar 

  40. Kamenshchik A., Moschella U. and Pasquier V. (2001). Phys. Lett. B 511: 265

    MATH  ADS  Google Scholar 

  41. Padmanabhan T. (2002). Phys. Rev. D 66: 021301

    ADS  Google Scholar 

  42. Bassett B.A., Kunz M., Parkinson D. and Ungarelli C. (2003). Phys. Rev. D 68: 043504

    ADS  Google Scholar 

  43. Cardone V.F., Troisi A. and Capozziello S. (2004). Phys. Rev. D 69: 083517

    ADS  Google Scholar 

  44. Capozziello S., Cardone V.F., Elizalde E., Nojiri S. and Odintsov S.D. (2006). Phys. Rev. D 73: 043512

    ADS  Google Scholar 

  45. Lue A., Scoccimarro R. and Starkman G. (2004). Phys. Rev. D 69: 044005

    ADS  Google Scholar 

  46. Freese K. and Lewis M. (2002). Phys. Lett. B 540: 1

    MATH  ADS  MathSciNet  Google Scholar 

  47. Dvali G.R., Gabadadze G. and Porrati M. (2000). Phys. Lett. B 485: 208

    MATH  ADS  MathSciNet  Google Scholar 

  48. Capozziello S. (2002). Int. J. Mod. Phys. D 11: 483

    MATH  ADS  MathSciNet  Google Scholar 

  49. Nojiri S. and Odintsov S.D. (2003). Phys. Rev. D 68: 123512

    ADS  MathSciNet  Google Scholar 

  50. Carroll S.M., Duvvuri V., Trodden M. and Turner M.S. (2004). Phys. Rev. D 70: 043528

    ADS  Google Scholar 

  51. Allemandi G., Borowiec A. and Francaviglia M. (2004). Phys. Rev. D 70: 103503

    ADS  MathSciNet  Google Scholar 

  52. Nojiri S. and Odintsov S.D. (2007). Int. J. Meth. Mod. Phys. 4: 115

    MATH  MathSciNet  Google Scholar 

  53. Capozziello S., Cardone V.F., Piedipalumbo E., Sereno M. and Troisi A. (2003). Int. J. Mod. Phys. D 12: 381

    ADS  Google Scholar 

  54. Capozziello S., Cardone V.F., Carloni S. and Troisi A. (2003). Int. J. Mod. Phys. D 12: 1969

    ADS  Google Scholar 

  55. Starobinsky, A.A.: astro-ph/0706.2041 (2007)

  56. Li B. and Barrow J.D. (2007). Phys. Rev. D 75: 084010

    ADS  MathSciNet  Google Scholar 

  57. Nojiri, S., Odintsov, S.D.: hep-th/06012113 (2006)

  58. Li, B., Barrow, J.D., Mota, D.F.: Phys. Rev. D (submitted), gr-qc/0705.3795

  59. Chen G. and Rathra B. (2003). Astrophys. J. 582: 586

    ADS  Google Scholar 

  60. Podariu S., Daly R.A., Mory M.P. and Rathra B. (2003). Astrophys. J. 584: 577

    ADS  Google Scholar 

  61. Will C.M. (1993). Theory and Experiments in Gravitational Physics. Cambridge University Press, Cambridge

    Google Scholar 

  62. Hehl F.W., et al. (1976). Rev. Mod. Phys. 48: 393

    ADS  MathSciNet  Google Scholar 

  63. Capozziello S., Lambiase G. and Stornaiolo C. (2001). Ann. Phys. (Leipzig) 10: 713

    MATH  ADS  MathSciNet  Google Scholar 

  64. Stelle K. (1978). Gen. Relativ. Gravit. 9: 353

    ADS  MathSciNet  Google Scholar 

  65. Sanders R.H. (1990). Ann. Rev. Astron Astrophys. 2: 1

    Google Scholar 

  66. Mannheim P.D. and Kazanas D. (1989). Astrophys. J. 342: 635

    ADS  MathSciNet  Google Scholar 

  67. Anderson J.D., et al. (2002). Phys. Rev. D 65: 082004

    ADS  Google Scholar 

  68. Bertolami, O., Böhmer, Ch.G., Lobo, F.S.N.: gr-qc/0704.1733 (2007)

  69. Quant I. and Schmidt H.-J. (1991). Astron. Nachr. 312: 97

    MATH  ADS  Google Scholar 

  70. Schneider P., Ehlers J. and Falco E.E. (1992). Gravitational Lenses. Springer, Berlin

    Google Scholar 

  71. Krauss L.M. and White M. (1992). Astrophys. J. 397: 357

    ADS  Google Scholar 

  72. Ferraris M., Francaviglia M. and Magnano G. (1988). Class. Quantum Grav. 5: L95

    ADS  MathSciNet  Google Scholar 

  73. Sokolowski L.M. (1989). Class. Quantum Grav. 6: 2045

    MATH  ADS  MathSciNet  Google Scholar 

  74. Magnano G. and Sokołowski L.M. (1994). Phys. Rev. D 50: 5039

    ADS  MathSciNet  Google Scholar 

  75. Dicke R.H. (1962). Phys. Rev. 125: 2163

    MATH  ADS  MathSciNet  Google Scholar 

  76. Damour T. and Esposito-Farèse G. (1992). Class. Quantum Grav. 9: 2093

    MATH  ADS  Google Scholar 

  77. Capozziello S., de Ritis R. and Marino A.A. (1997). Class. Quantum Grav. 14: 3243

    MATH  ADS  MathSciNet  Google Scholar 

  78. Faraoni V. (2004). Cosmology in Scalar-Tensor Gravity. Kluwer, Dordrecht

    MATH  Google Scholar 

  79. Einstein, A.: Sitzung-ber. Preuss. Akad. Wiss. 414 (1925)

  80. Buchdahl H.A. (1979). J. Phys. A 12(8): 1229

    ADS  MathSciNet  Google Scholar 

  81. Ferraris M., Francaviglia M. and Reina C. (1982). Gen. Relativ. Gravit. 14: 243

    MATH  ADS  MathSciNet  Google Scholar 

  82. Ferraris M., Francaviglia M. and Volovich I. (1994). Class. Quantum Grav. 11: 1505

    MATH  ADS  MathSciNet  Google Scholar 

  83. Vollick D.N. (2003). Phys. Rev. D68: 063510

    ADS  Google Scholar 

  84. Li B. and Chu M.C. (2006). Phys. Rev. D 74: 104010

    ADS  Google Scholar 

  85. Li, B., Chan, K.C., Chu, M.C.: Phys. Rev. D astro-ph/0610794 (2006) (in press)

  86. Allemandi G., Capone M., Capozziello S. and Francaviglia M. (2006). Gen. Relativ. Gravit. 38: 33

    MATH  ADS  MathSciNet  Google Scholar 

  87. Meng X. and Wang P. (2004). Gen. Relativ. Gravit. 36(8): 1947

    MATH  ADS  MathSciNet  Google Scholar 

  88. Meng X. and Wang P. (2004). Gen. Relativ. Gravit. 36(12): 2673

    ADS  MathSciNet  Google Scholar 

  89. Einstein A. (1916). Ann. der Physik 49: 769

    ADS  Google Scholar 

  90. Eisenhart L.P. (1955). Riemannian Geometry. Princeton University Press, Princeton

    Google Scholar 

  91. Schrödinger E. (1960). Space-Time Structure. Cambridge University Press, Cambridge

    Google Scholar 

  92. Levi-Civita T. (1929). The Absolute Differential Calculus. Blackie and Son, London

    Google Scholar 

  93. Klein, O.: New Theories in Physics 77, International Institute of Intellectual Co-operation, League of Nations (1938)

  94. Cartan E. (1925). Ann. Econ. Norm. 42: 17

    ADS  MathSciNet  Google Scholar 

  95. Palatini A. (1919). Rend. Circ. Mat. Palermo 43: 203

    Article  MATH  Google Scholar 

  96. Arnold V.I. (1978). Mathematical Methods of Classical Mechanics. Springer, Berlin

    MATH  Google Scholar 

  97. Appelquist T., Chodos A. and Freund P.G.O. (1987). Modern Kaluza–Klein Theories. Addison-Wesley, Reading

    MATH  Google Scholar 

  98. Kaku M. (1993). Quantum Field Theory. Oxford University Press, Oxford

    Google Scholar 

  99. Green M.B., Schwarz J.H. and Witten E. (1987). Superstring Theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  100. Damour T. and Esposito-Farese G. (1992). Class. Quant. Grav. 9: 2093

    MATH  ADS  MathSciNet  Google Scholar 

  101. Ferraris, M., Francaviglia, M.: In: Francaviglia, M., (ed.) Mechanics, Analysis and Geometry: 200 Years after Lagrange. Elsevier BV, Amsterdam (1991)

  102. Capozziello S., de Ritis R., Rubano C. and Scudellaro P. (1996). Int. J. Mod. Phys. D 5: 85

    ADS  MathSciNet  Google Scholar 

  103. Capozziello S. and de Ritis R. (1994). Class. Quantum Grav. 11: 107

    ADS  MathSciNet  Google Scholar 

  104. Sahni V. and Starobinsky A. (2000). Int. J. Mod. Phys. D 9: 373

    ADS  Google Scholar 

  105. Capozziello S., Cardone V.F., Funaro M. and Andreon S. (2004). Phys. Rev. D 70: 123501

    ADS  Google Scholar 

  106. Capozziello S., Cardone V.F. and Troisi A. (2005). Phys. Rev. D 71: 043503

    ADS  Google Scholar 

  107. Capozziello S., Cardone V.F., Piedipalumbo E. and Rubano C. (2006). Class. Quant. Grav. 23: 1205

    MATH  ADS  MathSciNet  Google Scholar 

  108. Hannestad S. and Mortsell E. (2002). Phys. Rev. D 66: 0635088

    Google Scholar 

  109. Melchiorri A., Mersini L., Odman C.J. and Trodden M. (2003). Phys. Rev. D 68: 043509

    ADS  Google Scholar 

  110. Hannestad S. and Mortsell E. (2004). JCAP 0409: 001

    ADS  Google Scholar 

  111. Song Y., Hu W. and Sawicki I. (2007). Phys. Rev. D 75: 044004

    ADS  MathSciNet  Google Scholar 

  112. Tsujikawa, S.: astro-ph/0705.1032 (2007)

  113. Koivisto T. (2006). Phys. Rev. D 73: 083517

    ADS  MathSciNet  Google Scholar 

  114. Boughn S. and Crittenden R. (2004). Nature (Lond) 427: 45

    ADS  Google Scholar 

  115. Fasalba P. and Gaztanaga E. (2004). Mon. Not. R. Aston. Soc. 350: L37

    ADS  Google Scholar 

  116. Nolta M.R., et al. (2004). Astrophys. J. 608: 10

    ADS  Google Scholar 

  117. Zhang, P., Liguori, M., Bean, R., Dodelson, S.: astro-ph/0704.1932 (2007)

  118. Capozziello S. (2007). Int. J. Geom. Methods Mod. Phys. 4: 53

    MATH  MathSciNet  Google Scholar 

  119. Tegmark M., et al. (2004). Phys. Rev. D 69: 103501

    ADS  Google Scholar 

  120. Rebolo, R., et al.: astro-ph/0402466 (2004)

  121. Daly, R.A., Djorgovski, S.G.: astro-ph/0403664 (2004)

  122. Freedman W.L., et al. (2001). Astrophys. J. 553: 47

    ADS  Google Scholar 

  123. Cardone V.F., Capozziello S., Re V. and Piedipalumbo E. (2002). Astron. Astrophys. 382: 792

    ADS  Google Scholar 

  124. Saunders R., et al. (2003). Mon. Not. R. Aston. Soc. 341: 937

    ADS  Google Scholar 

  125. Schmidt R.W., Allen S.W. and Fabian A.C. (2004). Mon. Not. R. Aston. Soc. 352: 1413

    ADS  Google Scholar 

  126. Wang Y. and Mukherjee P. (2004). Astrophys. J. 606: 654

    ADS  Google Scholar 

  127. Wang Y. and Tegmark M. (2004). Phys. Rev. Lett. 92: 241302

    ADS  Google Scholar 

  128. Hu W. and Sugiyama N. (1996). Astrophys. J. 471: 542

    ADS  Google Scholar 

  129. Kirkman D., Tyler D., Suzuki N., O’Meara J.M. and Lubin D. (2003). Astrophys. J. 149: 1

    ADS  Google Scholar 

  130. Eisenstein D., et al. (2005). Astrophys. J. 633: 560

    ADS  Google Scholar 

  131. Strauss M.A., et al. (2005). Astrophys. J. 124: 1810

    Google Scholar 

  132. SNAP web page: http://snap.lbl.gov

  133. Faraoni V. (2005). Class. Quantum Grav. 22: 32352

    MathSciNet  Google Scholar 

  134. Rubano C. and Scudellaro P. (2005). Gen. Relativ. Gravit. 37: 521

    MATH  ADS  MathSciNet  Google Scholar 

  135. Sasaki S. (1996). PASJ 48: L119

    ADS  Google Scholar 

  136. Pen U. (1997). New Aston. 2: 309

    ADS  Google Scholar 

  137. Allen S.W., Schmidt R.W. and Fabian A.C. (2002). Mon. Not. R. Aston. Soc. 334: L11

    ADS  Google Scholar 

  138. Allen S.W., Schmidt R.W. and Bridle S. (2003). Mon. Not. R. Aston. Soc. 346: 593

    ADS  Google Scholar 

  139. Allen, S.W., Schmidt, R.W., Ebeling, H., Fabian, A.C., van Speybrock, L.: astro-ph/0405340 (2004)

  140. Eke V., Navarro J.F. and Frenk C.S. (1998). Astrophys. J. 503: 569

    ADS  Google Scholar 

  141. Freedman W.L., et al. (2001). Astrophys. J. 553: 47

    ADS  Google Scholar 

  142. Tegmark, M., et al.: astro-ph/0310723

  143. Dalal N., Abazajian K., Jenkins E. and Manohar A.V. (2001). Phys. Rev. Lett. 87: 141302

    ADS  Google Scholar 

  144. Lima J.A.S. and Alcaniz J.S. (2000). Mon. Not. R. Aston. Soc. 317: 893

    ADS  Google Scholar 

  145. Worthey, G.: Ph.D. Thesis. California University, Santa Cruz, 1992

  146. Bower R.G., Kodama T. and Terlevich A. (1998). Mon. Not. R. Aston. Soc. 299: 1193

    ADS  Google Scholar 

  147. Andreon S., Lobo C. and Iovino A. (2004). Mon. Not. R. Aston. Soc. 349: 889

    ADS  Google Scholar 

  148. Kodama T. and Arimoto N. (1997). Astron. Astrophys. 320: 41

    ADS  Google Scholar 

  149. Andreon S. (2003). Astron. Astrophys. 409: 37

    ADS  Google Scholar 

  150. Wyithe J.B., Loeb A. and Barnes D.G. (2005). Astrophys. J. 634: 715

    ADS  Google Scholar 

  151. McQuinn M., et al. (2006). Astrophys. J. 653: 815

    ADS  Google Scholar 

  152. Sigurdson K. and Cooray A. (2005). Phys. Rev. Lett. 95: 211303

    ADS  Google Scholar 

  153. Blakeslee J.P., et al. (2003). Astrophys. J. 596: L143

    ADS  Google Scholar 

  154. Cayrel R., et al. (2001). Nature 409: 691

    ADS  Google Scholar 

  155. Daly R.A. and Djorgovsky S.G. (2004). Astrophys. J. 612: 652

    ADS  Google Scholar 

  156. Spergel D.N., et al.: arXiv: astro-ph/0603449 (2006)

  157. Capozziello, S., Nojiri, S., Odintsov, S.D., Troisi, A.: Phys. Lett. B 135 (2006)

  158. Amendola L., Polarski D. and Tsujikawa S. (2007). Phys. Rev. Lett. 98: 131302

    ADS  MathSciNet  Google Scholar 

  159. Amendola L., Gannouji R., Polarski D. and Tsujikawa S. (2007). Phys. Rev. D75: 083504

    ADS  Google Scholar 

  160. Carloni S., Dunsby P., Capozziello S. and Troisi A. (2005). Class. Quant. Grav. 22: 4839

    MATH  ADS  MathSciNet  Google Scholar 

  161. Carloni, S., Troisi, A., Dunsby, P.K.S.: gr-qc/0706.0452 (2007)

  162. Hwang J.C. and Noh H. (1996). Phys. Rev. D 54: 1460

    ADS  Google Scholar 

  163. Hwang J.C. and Noh H. (2001). Phys. Lett. B 506: 13

    ADS  Google Scholar 

  164. Zhang P. (2006). Phys. Rev. D 73: 123504

    ADS  Google Scholar 

  165. Mukhanov V.F., Feldman H.A. and Brandenberger R.H. (1992). Phys. Rept. 215: 203

    ADS  MathSciNet  Google Scholar 

  166. Lahav O., et al. (2002). Mon. Not. R. Aston. Soc. 333: 961

    ADS  Google Scholar 

  167. Capozziello S., Cardone V.F. and Francaviglia M. (2006). Gen. Relativ. Gravit. 38: 711

    MATH  ADS  MathSciNet  Google Scholar 

  168. Capozziello S. and Corda Ch. (2006). Int. J. Mod. Phys. D 15: 1119

    MATH  ADS  Google Scholar 

  169. Capozziello S., Corda Ch. and De Laurentis M. (2007). Mod. Phys. Lett. A 22: 1097

    MATH  ADS  Google Scholar 

  170. Capozziello, S., De Laurentis, M., Francaviglia, M.: Int. J. Mod. Phys. D (2007)(submitted)

  171. Milgrom M. (1983). Astroph. J. 270: 365

    ADS  Google Scholar 

  172. Bekenstein J. (2004). Phys. Rev. D 70: 083509

    ADS  Google Scholar 

  173. Stelle K. (1978). Gen. Rel. Grav. 9: 353

    ADS  MathSciNet  Google Scholar 

  174. Capozziello S., Cardone V.F., Carloni S. and Troisi A. (2004). Phys. Lett. A 326: 292

    ADS  MathSciNet  MATH  Google Scholar 

  175. Capozziello S., Cardone V.F. and Troisi A. (2006). JCAP 0608: 1423

    Google Scholar 

  176. Capozziello S., Cardone V.F. and Troisi A. (2007). Mon. Not. R. Aston. Soc. 375: 1423

    ADS  Google Scholar 

  177. de Blok W.J.G. and Bosma A. (2002). Astron. Astroph. 385: 816

    ADS  Google Scholar 

  178. Frigerio, C., Martins, P.: Salucci, astro-ph/07032443

  179. Binney J. and Tremaine S. (1987). Galactic Dynamics. Princeton University Books, Princeton

    MATH  Google Scholar 

  180. Burkert A. (1995). Astrophys. J. 447: L25

    ADS  Google Scholar 

  181. Burkert A. and Silk J. (1997). Astrophys. J. 488: L55

    ADS  Google Scholar 

  182. Borriello A. and Salucci P. (2001). Mont. Not. Roy. Astron. Soc. 323: 285

    ADS  Google Scholar 

  183. Gentile G. and Salucci P. (2004). Mon. Not. Roy. Astron. Soc. 351: 953

    Google Scholar 

  184. McGaugh S.S. (2005). Astrophys. J. 632: 859

    ADS  Google Scholar 

  185. Capozziello, S., Carloni, S., Troisi, A.: Rec. Res. Devel. Astron. Astrophys. 1, 625 (2003), astro-ph/0303041

  186. Allemandi G., Borowiec A. and Francaviglia M. (2004). Phys. Rev. D 70: 043524

    ADS  MathSciNet  Google Scholar 

  187. Vollick D.N. (2003). Phys. Rev. D 68: 063510

    ADS  Google Scholar 

  188. Meng X.H. and Wang P. (2003). Class. Quant. Grav. 20: 4949

    MATH  ADS  MathSciNet  Google Scholar 

  189. Flanagan E.E. (2004). Phys. Rev. Lett. 92: 071101

    ADS  MathSciNet  Google Scholar 

  190. Flanagan E.E. (2004). Class. Quant. Grav. 21: 417

    MATH  ADS  MathSciNet  Google Scholar 

  191. Meng X.H. and Wang P. (2004). Class. Quant. Grav. 21: 951

    MATH  ADS  MathSciNet  Google Scholar 

  192. Kremer G.M. and Alves D.S.M. (2004). Phys. Rev. D 70: 023503

    ADS  Google Scholar 

  193. Multamaki T. and Vilja I. (2006). Phys. Rev. D 73: 024018

    ADS  MathSciNet  Google Scholar 

  194. Olmo G.J. (2005). Phys. Rev. Lett. 95: 261102

    ADS  Google Scholar 

  195. Olmo G.J. (2005). Phys. Rev. D 72: 083505

    ADS  Google Scholar 

  196. Capozziello, S., Troisi, A.: Phys. Rev. D 72 (2005)

  197. Capozziello S., Stabile A. and Troisi A. (2006). Mod. Phys. Lett. A 21: 2291

    MATH  ADS  Google Scholar 

  198. Allemandi G., Francaviglia M., Ruggiero M. and Tartaglia A. (2005). Gen. Rel. Grav. 37: 1891

    MATH  ADS  MathSciNet  Google Scholar 

  199. Turyshev, S.G., Shao, M., Nordtvedt, K.L.: pre-print: gr-qc/0601035

  200. Shapiro, I.I.: In: Ashby, N., et al. (eds.) General Relativity and Gravitation 12. Cambridge University Press, Cambridge (1993)

  201. Shapiro S.S., et al. (2004). Phys. Rev. Lett. D 92: 121101

    ADS  Google Scholar 

  202. Williams J.G., et al. (1996). Phys. Rev. D 53: 6730

    ADS  Google Scholar 

  203. Bertotti B., Iess L. and Tortora P. (2003). Nature 425: 374

    ADS  Google Scholar 

  204. Capolupo A., Capozziello S. and Vitiello G. (2007). Phys. Lett. A 363: 53

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Capozziello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capozziello, S., Francaviglia, M. Extended theories of gravity and their cosmological and astrophysical applications. Gen Relativ Gravit 40, 357–420 (2008). https://doi.org/10.1007/s10714-007-0551-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0551-y

Keywords

Navigation