Skip to main content
Log in

Spin-Wave Resonance in (Fe0.82Ni0.18)/V Nanostructure

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We have studied the transmission of millimeter-range electromagnetic waves through (Fe0.82Ni0.18)/V nanostructure. The dependences of the transmission coefficient in the external magnetic field have been measured. The curves have a minimum caused by energy absorption under the ferromagnetic resonance conditions at frequencies 26–35.6 and 37–38 GHz. In a narrow frequency interval near 36 GHz, a complex pattern of resonance phenomena associated with ferromagnetic and spin-wave resonances is observed. We have calculated the field dependence of the transmission coefficient. It has been established that the model of a homogeneous magnetic metal plate used in calculations makes it possible to reproduce some features of resonant changes in the transmission coefficient, which are induced by ferromagnetic and spin-wave resonances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands, Nat. Phys. 11, 453 (2015).

    Article  Google Scholar 

  2. B. Divinskiy, V. E. Demidov, S. O. Demokritov, A. B. Rinkevich, and S. Urazhdin, Appl. Phys. Lett. 109, 252401 (2016).

    Article  ADS  Google Scholar 

  3. S. A. Nikitov, D. V. Kalyabin, I. V. Lisenkov, A. N. Slavin, Yu. N. Barabanenkov, S. A. Osokin, A. V. Sadovnikov, E. N. Beginin, M. A. Morozova, Yu. P. Sharaevskii, Yu. A. Filimonov, Yu. V. Khivintsev, S. L. Vysotskii, V. K. Sakharov, and E. S. Pavlov, Phys. Usp. 58, 1002 (2015).

    Article  ADS  Google Scholar 

  4. B. A. Kalinikos and A. N. Slavin, J. Phys. C 19, 7013 (1986).

    Article  ADS  Google Scholar 

  5. V. A. Ignatchenko and R. S. Iskhakov, Sov. Phys. JETP 48, 726 (1978).

    ADS  Google Scholar 

  6. A. B. Drovosekov, O. V. Zhotikova, N. M. Kreines, V. F. Meshcheryakov, M. A. Milyaev, L. N. Romashev, V. V. Ustinov, and D. I. Kholin, J. Exp. Theor. Phys. 89, 986 (1999).

    Article  ADS  Google Scholar 

  7. K. Lenz, H. Wende, W. Kuch, K. Baberschke, K. Nagy, and A. Jánossy, Phys. Rev. B 73, 144424 (2006).

    Article  ADS  Google Scholar 

  8. A. Hamadeh, O. d’Allivy Kelly, C. Hahn, H. Meley, R. Bernard, A. H. Molpeceres, V. V. Naletov, M. Viret, A. Anane, V. Cros, S. O. Demokritov, J. L. Prieto, M. Muñoz, G. de Loubens, and O. Klein, Phys. Rev. Lett. 113, 197203 (2014).

    Article  ADS  Google Scholar 

  9. B. Divinsky, V. E. Demidov, S. Urazhdin, R. Freeman, A. B. Rinkevich, and S. O. Demokritov, Adv. Mater. 30, 1802837 (2018).

    Article  Google Scholar 

  10. S. Iskhakov, N. A. Shepeta, S. V. Stolyar, L. A. Chekanova, and V. Yu. Yakovchuk, JETP Lett. 83, 28 (2006).

    Article  Google Scholar 

  11. R. S. Iskhakov, S. V. Stolyar, M. V. Chizhik, and L. A. Chekanova, JETP Lett. 94, 301 (2011).

    Article  ADS  Google Scholar 

  12. R. S. Iskhakov, S. V. Stolyar, L. A. Chekanova, and M. V. Chizhik, Phys. Solid State 54, 748 (2012).

    Article  ADS  Google Scholar 

  13. I. G. Vazhenina, R. S. Iskhakov, and L. A. Chekanova, Phys. Solid State 60, 292 (2018).

    Article  ADS  Google Scholar 

  14. M. Kostylev, J. Appl. Phys. 113, 053908 (2013).

    Article  ADS  Google Scholar 

  15. S. S. Kalarickal, P. Krivosik, M. Wu, C. E. Patton, M. L. Schneider, P. Kabos, T. J. Silva, and J. P. Nibarger, J. Appl. Phys. 99, 093909 (2006).

    Article  ADS  Google Scholar 

  16. K. Ando, J. Ieda, K. Sasage, S. Takahashi, S. Maekawa, and E. Saitoh, Appl. Phys. Lett. 94, 262505 (2009).

    Article  ADS  Google Scholar 

  17. I. S. Maksymov and M. Kostylev, J. Appl. Phys. 116, 173905 (2014).

    Article  ADS  Google Scholar 

  18. V. Flovik, E. Wahlström, F. Macià, and A. D. Kent, arXiv:1412.1385v3 [cond-mat.mes-hall] (2015).

  19. B. Heinrich and V. F. Meshcheryakov, JETP Lett. 9, 378 (1969).

    ADS  Google Scholar 

  20. V. V. Ustinov, A. B. Rinkevich, L. N. Romashev, and V. I. Minin, J. Magn. Magn. Mater. 177181, 1205 (1998).

  21. A. B. Rinkevich, L. N. Romashev, and V. V. Ustinov, J. Exp. Theor. Phys. 90, 834 (2000).

    Article  ADS  Google Scholar 

  22. A. B. Rinkevich, L. N. Romashev, V. V. Ustinov, and E. A. Kuznetsov, J. Magn. Magn. Mater. 254255C, 603 (2003).

  23. D. E. Endean, J. N. Heyman, S. Maat, and E. Dan Dahlberg, Phys. Rev. B 84, 212405 (2011).

    Article  ADS  Google Scholar 

  24. A. B. Rinkevich, D. V. Perov, V. O. Vas’kovskii, and V. N. Lepalovskii, Tech. Phys. 54, 1339 (2009).

    Article  Google Scholar 

  25. A. B. Rinkevich, D. V. Perov, and V. O. Vaskovsky, Phys. Scr. 83, 015705 (2011).

    Article  ADS  Google Scholar 

  26. D. Fraitová, Phys. Status Solidi B 120, 659 (1983).

    Article  ADS  Google Scholar 

  27. D. V. Perov, A. B. Rinkevich, and S. O. Demokritov, Phys. Scr. 91, 025802 (2016).

    Article  ADS  Google Scholar 

  28. G. Andersson, B. Hjörvarsson, and H. Zabel, Phys. Rev. B 55, 15905 (1997).

    Article  ADS  Google Scholar 

  29. D. Labergerie, C. Sutter, H. Zabel, and B. Hjörvarsson, J. Magn. Magn. Mater. 192, 238 (1999).

    Article  ADS  Google Scholar 

  30. P. Poulopoulos, P. Isberg, W. Platow, W. Wisny, M. Farle, B. Hjörvarsson, and K. Baberschke, J. Magn. Magn. Mater. 170, 57 (1997).

    Article  ADS  Google Scholar 

  31. O. Eriksson, L. Bergqvist, E. Holmström, A. Bergman, O. le Bacq, S. Frota-Pessoa, B. Hjörvarsson, and L. Nordström, J. Phys.: Condens. Matter 15, S599 (2003).

    ADS  Google Scholar 

  32. G. K. Pálsson, A. R. Rennie, and B. Hjörvarsson, Phys. Rev. B 78, 104118 (2008).

    Article  ADS  Google Scholar 

  33. W. S. Ament and G. T. Rado, Phys. Rev. 97, 1558 (1955).

    Article  ADS  Google Scholar 

  34. C. E. Patton, Czech. J. Phys. B 26, 925 (1976).

    Article  ADS  Google Scholar 

  35. D. Fraitová, Phys. Status Solidi B 120, 341 (1983).

    Article  ADS  Google Scholar 

  36. M. I. Kaganov and Yui Lu, Izv. Akad. Nauk SSSR, Ser. Fiz. 25, 1375 (1961).

    Google Scholar 

  37. H. Puszkarski and P. Tomczak, Phys. Rev. B 91, 195437 (2015).

    Article  ADS  Google Scholar 

  38. A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (Fizmatlit, Moscow, 1994; CRC, Boca Raton, FL, 1996).

  39. A. B. Rinkevich and D. V. Perov, in Recent Research Development in Material Sciences 9, Ed. by S. G. Pandalai (Research Signpost, Kirala, 2012), Chap. 6, p. 157.

  40. J. Izquierdo, R. Robles, A. Vega, M. Talanana, and C. Demangeat, Phys. Rev. B 64, 060404 (2001).

    Article  ADS  Google Scholar 

  41. A. B. Rinkevich, M. I. Samoilovich, S. M. Klescheva, D. V. Perov, A. M. Burkhanov, and E. A. Kuznetsov, IEEE Trans. Nanotechnol. 13, 3 (2014).

    Article  ADS  Google Scholar 

  42. V. V. Ustinov, A. B. Rinkevich, L. N. Romashev, and E. A. Kuznetsov, Tech. Phys. Lett. 33, 771 (2007).

    Article  ADS  Google Scholar 

  43. C. P. Poole, Electron Spin Resonance: Comprehensive Treatise on Experimental Techniques (Wiley, New York, London, Sydney, 1967; Moscow, Mir, 1970).

  44. U. Fano, Phys. Rev. 124, 1866 (1961).

    Article  ADS  Google Scholar 

  45. A. E. Miroshnichenko, S. Flach, and Yu. S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Prof. B. Hjövarsson from the Uppsala University (Sweden) for supplying the nanostructure sample.

Funding

This study was supported by the Russian Science Foundation (project no. 17-12-01002). The results of Section 3 were obtained in accordance with programs “Spin” (no. AAAA-A18-118020290104-2) and “Function” (no. AAA-A19-119012990095-0).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. B. Rinkevich or D. V. Perov.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rinkevich, A.B., Perov, D.V., Kuznetsov, E.A. et al. Spin-Wave Resonance in (Fe0.82Ni0.18)/V Nanostructure. J. Exp. Theor. Phys. 129, 911–923 (2019). https://doi.org/10.1134/S106377611909005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611909005X

Navigation