Skip to main content
Log in

On Thermal Runaway Electrons and the Polarization of X-ray Emission in Solar Flares

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A model for the thermal runaway of electrons in solar flares based on an approximate analytical solution of the kinetic equation with a linearized Landau collision integral is considered. Coulomb collisions are shown to make the flux of runaway electrons with a very high temperature nearly isotropic. The derived electron distribution function is used to estimate the polarization of the hard X-ray bremsstrahlung of solar flares. Since the anisotropy of the flux of electrons is low, the polarization of their bremsstrahlung does not exceed 3–4% at an energy of about 15 keV, which creates great difficulties for future extra-atmospheric polarization observations. Furthermore, the Compton scattering of hard X-ray emission by the photosphere and magnetic field inhomogeneity can severely distort the expected results and can make their interpretation difficult. The prospects for space experiments to measure the polarization of the hard X-ray emission from solar flares are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. G. Frank, N. P. Kyrie, V. S. Markov, et al., Plasma Phys. Rep. 44, 551 (2018).

    Article  ADS  Google Scholar 

  2. A. G. Frank and S. N. Satumin, Plasma Phys. Rep. 44, 190 (2018).

    Article  ADS  Google Scholar 

  3. The Coronas-F Space Mission: Key Results for Solar Terrestrial Physics, Ed. by V. D. Kuznetsov (Springer Science, Berlin, Heidelberg, 2014).

  4. Magnetic Reconnection. Concepts and Applications, Ed. by W. Gonzalez and E. Parker (Springer Science, Heidelberg, 2016).

    Google Scholar 

  5. A. S. Kirichenko and S. A. Bogachev, Astrophys. J. 840, 45 (2017).

    Article  ADS  Google Scholar 

  6. I. H. Cairns, V. V. Lobzin, A. Donea, et al., Sci. Rep. 8, 1676 (2018). https://doi.org/10.1038/s41598-018-19195-3

    Article  ADS  Google Scholar 

  7. S. I. Syrovatskii, Sov. Phys. JETP 23, 754 (1966).

    ADS  Google Scholar 

  8. S. I. Syrovatskii, Sov. Phys. JETP 33, 933 (1971).

    ADS  Google Scholar 

  9. M. Aschwanden, Physics of the Solar Corona: An Introduction with Problems and Solutions (Springer Science, New York, 2006).

    Google Scholar 

  10. L. Fletcher, B. R. Dennis, H. S. Hudson, et al., Space Sci. Rev. 159, 19 (2011).

    Article  ADS  Google Scholar 

  11. A. Reva, S. Shestov, I. Zimovets, et al., Solar Phys. 290, 2909 (2015).

    Article  ADS  Google Scholar 

  12. A. O. Benz, Living Rev. Solar Phys. 14, 2 (2017). https://doi.org/10.1007/s41116-016-0004-3

    Article  ADS  Google Scholar 

  13. B. V. Somov, Bull. Acad. Sci. USSR: Phys. 45 (4), 114 (1981).

    Google Scholar 

  14. B. V. Somov and V. S. Titov, Solar Phys. 102, 79 (1985).

    Article  ADS  Google Scholar 

  15. B. V. Somov, Plasma Astrophysics, Part II: Reconnection and Flares, 2nd ed. (Springer Science, New York, 2013b).

    Book  Google Scholar 

  16. G. A. Dulk and B. R. Dennis, Astrophys. J. 260, 875 (1982).

    Article  ADS  Google Scholar 

  17. A. V. Oreshina and B. V. Somov, Bull. Russ. Acad. Sci.: Phys. 59, 1318 (1995).

    Google Scholar 

  18. D. F. Smith and C. G. Lilliequist, Astrophys. J. 232, 582 (1979).

    Article  ADS  Google Scholar 

  19. B. V. Somov, Plasma Astrophysics, Part I: Fundamentals and Practice, 2nd ed. (Springer Science, New York, 2013).

  20. J. C. Brown, D. B. Melrose, and D. S. Spicer, Astrophys. J. 228, 592 (1979).

    Article  ADS  Google Scholar 

  21. P. A. Gritsyk and B. V. Somov, Astron. Lett. 40, 499 (2014).

    Article  ADS  Google Scholar 

  22. E. M. Lifshitz and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 10: Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981).

  23. V. S. Vladimirov, Equations of Mathematical Physics (Nauka, Moscow, 1981; Imported Pub., 1985).

  24. G. Elwert and E. Haug, Solar Phys. 15, 234 (1970).

    Article  ADS  Google Scholar 

  25. G. D. Fleishman and I. N. Toptygin, Cosmic Electrodynamics: Electrodynamics and Magnetic Hydrodynamics of Cosmic Plasmas (Springer Science, New York, 2013).

    Book  Google Scholar 

  26. L. Nocera, Yu. I. Skrynnikov, and B. V. Somov, Solar Phys. 97, 81 (1985).

    Article  ADS  Google Scholar 

  27. B. V. Somov and S. I. Syrovatskii, Sov. Phys. Usp. 19, 813 (1976).

    Article  ADS  Google Scholar 

  28. I. P. Tindo and B. V. Somov, COSPAR: New Instrumentation for Space Astronomy, Ed. by K. Van der Hucht and G. S. Vaiana (Pergamon, New York, Oxford, 1978).

    Google Scholar 

  29. B. V. Somov and I. P. Tindo, Cosmic Res. 16, 555 (1979).

    ADS  Google Scholar 

  30. R. J. Thomas, in Solar Gamma-, X-, and EUV Radiation, Proceedings of the 68th IAU/COSPAR Symposium, Ed. by S. Kane (Reidel, Dordrecht, 1975), p. 25.

  31. S. P. Maran and R. J. Thomas, The New Astronomy and Space Science Reader, Ed. by J. C. Brandt and S. P. Maran (W. H. Freeman, San Francisco, CA, 1977), p. 293.

    Google Scholar 

  32. M. L. McConnell, J. M. Rayn, D. M. Smith, et al., Solar Phys. 210, 125 (2002).

    Article  ADS  Google Scholar 

  33. M. L. McConnell, D. M. Smith, A. G. Emslie, et al., Adv. Space Res. 34, 462 (2004).

    Article  ADS  Google Scholar 

  34. S. E. Boggs, W. Coburn, and E. Kalemci, Astrophys. J. 638, 1129 (2006).

    Article  ADS  Google Scholar 

  35. B. V. Somov and P. A. Gritsyk, Mosc. Univ. Phys. Bull. 67, 102 (2012).

    Article  ADS  Google Scholar 

  36. P. Hoyng, J. C. Brown, and H. Frank van Beek, Solar Phys. 48, 197 (1976).

    Article  ADS  Google Scholar 

  37. S. I. Gopasyuk, Adv. Space Res. 10 (9), 151 (1990).

    Article  ADS  Google Scholar 

  38. J. C. Henoux, Solar Phys. 42, 219 (1975).

    Article  ADS  Google Scholar 

  39. S. L. Mandelshtam, I. L. Beigman, and I. P. Tindo, Nature (London, U.K.) 254, 462 (1975).

    Article  ADS  Google Scholar 

  40. B. V. Somov, in Cosmic Rays in the Stratosphere and in Near Space, Tr. FIAN 88, 121 (1978).

  41. S. V. Bogovalov, S. R. Kel’ner, and Yu. D. Kotov, Sov. Astron. 32, 664 (1988).

    ADS  Google Scholar 

  42. N. Duncan, P. Saint-Hilaire, A. Y. Shih, et al., Proc. SPIE 9905, 9905Q (2016). https://doi.org/10.1117/12.2233859

    Article  Google Scholar 

  43. M. C. Waisskopf, B. Ramsey, S. L. O’Dell, et al., Proc. SPIE 9905, 990517 (2016). https://doi.org/10.1117/12.2235240

    Article  Google Scholar 

  44. N. Produit, T. W. Bao, T. Batsch, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 877, 259 (2018).

    Google Scholar 

  45. V. D. Kuznetsov, L. M. Zelenyi, I. V. Zimovets, K. Anufreychik, V. Bezrukikh, I. V. Chulkov, A. A. Konovalov, G. A. Kotova, R. A. Kovrazhkin, D. Moiseenko, A. A. Petrukovich, A. Remizov, A. Shestakov, A. Skalsky, O. L. Vaisberg, et al., Geomagn. Aeron. 56, 781 (2016).

    Article  ADS  Google Scholar 

  46. Yu. D. Kotov, V. N. Yurov, A. S. Glyanenko, et al., Adv. Space Res. 58, 635 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. A. Gritsyk or B. V. Somov.

Additional information

Translated by V. Astakhov

APPENDIX

APPENDIX

Below we give a detailed derivation of the basic kinetic equation (5) that we solve in this paper. Let us rewrite the original equation (3) by taking into account (4) and neglecting the derivative ∂fv/∂t (see Section 2.1):

$$\begin{gathered} {v}\cos \theta \frac{{\partial {{f}_{{\mathbf{v}}}}}}{{\partial x}} - \frac{1}{{{{{v}}^{2}}}}\frac{\partial }{{\partial {v}}} \\ \, \times \left[ {{{{v}}^{2}}{{\nu }_{{{\text{coll}}}}}({v})\left( {\frac{{{{k}_{{\text{B}}}}{{T}_{2}}}}{{{{m}_{e}}}}\frac{{\partial {{f}_{{\mathbf{v}}}}}}{{\partial {v}}} + {v}{{f}_{{\mathbf{v}}}}} \right)} \right] \\ \, - {{\nu }_{{{\text{coll}}}}}({v})\frac{\partial }{{\partial \cos \theta }}\left( {{{{\sin }}^{2}}\theta \frac{{\partial {{f}_{{\mathbf{v}}}}}}{{\partial \cos \theta }}} \right) = 0. \\ \end{gathered} $$
((A.1))

Substituting the expression for the Coulomb collision frequency of superhot electrons with electrons and protons in the hot plasma

$${{\nu }_{{{\text{coll}}}}}({v}) = \frac{{4\pi {{n}_{2}}{{e}^{4}}}}{{m_{e}^{2}{{{v}}^{3}}}}\ln \Lambda $$

into (A.1), we obtain the equation

$$\begin{gathered} {v}\cos \theta \frac{{\partial {{f}_{{\mathbf{v}}}}}}{{\partial x}} - \frac{1}{{{{{v}}^{2}}}}\frac{\partial }{{\partial {v}}} \\ \, \times \left[ {{{{v}}^{2}}\frac{{4\pi {{n}_{e}}{{e}^{4}}}}{{m_{e}^{2}{{{v}}^{3}}}}\ln \Lambda \left( {\frac{{{{k}_{{\text{B}}}}{{T}_{2}}}}{{{{m}_{e}}}}\frac{{\partial {{f}_{{\mathbf{v}}}}}}{{\partial {v}}} + {v}{{f}_{{\mathbf{v}}}}} \right)} \right] \\ \, - \frac{{4\pi {{n}_{e}}{{e}^{4}}}}{{m_{e}^{2}{{{v}}^{3}}}}\ln \Lambda \frac{\partial }{{\partial \cos \theta }}\left( {{{{\sin }}^{2}}\theta \frac{{\partial {{f}_{{\mathbf{v}}}}}}{{\partial \cos \theta }}} \right) = 0. \\ \end{gathered} $$
((A.2))

To pass from the original variables (x, \({v}\), θ) to the dimensionless variables (s, z, μ), let us make the following substitutions in (A.2):

$$\partial x = \frac{{{{{({{k}_{{\text{B}}}}{{T}_{1}})}}^{2}}}}{{\pi {{n}_{2}}{{e}^{4}}\ln \Lambda }}\partial s,\quad {v} = {{\left( {\frac{{2{{k}_{{\text{B}}}}{{T}_{1}}}}{{{{m}_{e}}}}} \right)}^{{1/2}}}{{z}^{{1/2}}},$$
$$\cos \theta = \mu .$$

We will obtain

$$\begin{gathered} {{\left( {\frac{{2{{k}_{{\text{B}}}}{{T}_{1}}}}{{{{m}_{e}}}}} \right)}^{{1/2}}}{{z}^{{1/2}}}\mu \frac{{\pi {{n}_{2}}{{e}^{4}}\ln \Lambda }}{{{{{({{k}_{{\text{B}}}}{{T}_{1}})}}^{2}}}}\frac{{\partial {{f}_{{\mathbf{v}}}}}}{{\partial s}} - {{\left( {\frac{{{{m}_{e}}}}{{2{{k}_{{\text{B}}}}{{T}_{1}}}}} \right)}^{{3/2}}} \\ \times 2{{z}^{{ - 1/2}}}\frac{\partial }{{\partial z}}\left[ {\left( {\frac{{2{{k}_{{\text{B}}}}{{T}_{1}}}}{{{{m}_{e}}}}} \right)\frac{{4\pi {{n}_{2}}{{e}^{4}}\ln \Lambda }}{{m_{e}^{{1/2}}{{{(2{{k}_{{\text{B}}}}{{T}_{1}})}}^{{3/2}}}}}} \right. \\ \left. { \times \left( {\left( {\frac{{2{{k}_{{\text{B}}}}{{T}_{2}}}}{{{{m}_{e}}}}} \right){{{\left( {\frac{{{{m}_{e}}}}{{2{{k}_{{\text{B}}}}{{T}_{1}}}}} \right)}}^{{1/2}}}\frac{{\partial {{f}_{{\mathbf{v}}}}}}{{\partial z}} + {{{\left( {\frac{{2{{k}_{{\text{B}}}}{{T}_{1}}}}{{{{m}_{e}}}}} \right)}}^{{1/2}}}{{f}_{{\mathbf{v}}}}} \right)} \right] \\ - \frac{{4\pi {{n}_{2}}{{e}^{4}}\ln \Lambda }}{{m_{e}^{{1/2}}{{{(2{{k}_{{\text{B}}}}{{T}_{1}})}}^{{3/2}}}{{z}^{{3/2}}}}}\frac{\partial }{{\partial \mu }}\left( {(1 - {{\mu }^{2}})\frac{{\partial {{f}_{{\mathbf{v}}}}}}{{\partial \mu }}} \right) = 0. \\ \end{gathered} $$
((A.3))

Hence we have

$$\begin{gathered} \frac{4}{{m_{e}^{{1/2}}{{{(2{{k}_{{\text{B}}}}{{T}_{1}})}}^{{3/2}}}}}{{z}^{2}}\mu \frac{{\partial {{f}_{{\mathbf{v}}}}}}{{\partial s}} - 2z\left( {\frac{{{{m}_{e}}}}{{2{{k}_{{\text{B}}}}}}} \right)\frac{\partial }{{\partial z}} \\ \times \left[ {\frac{4}{{m_{e}^{{1/2}}{{{(2{{k}_{{\text{B}}}}{{T}_{1}})}}^{{3/2}}}}}\left( {\left( {\frac{{2{{k}_{{\text{B}}}}}}{{{{m}_{e}}}}} \right)\frac{{{{T}_{2}}}}{{{{T}_{1}}}}\frac{{\partial {{f}_{{\mathbf{v}}}}}}{{\partial z}}} \right.} \right. \\ \left. {\left. { + \left( {\frac{{2{{k}_{{\text{B}}}}}}{{{{m}_{e}}}}} \right){{f}_{{\mathbf{v}}}}} \right)} \right] - \frac{4}{{m_{e}^{{1/2}}{{{(2{{k}_{{\text{B}}}}{{T}_{1}})}}^{{3/2}}}}}\frac{\partial }{{\partial \mu }}\left( {(1\, - \,{{\mu }^{2}})\frac{{\partial {{f}_{{\mathbf{v}}}}}}{{\partial \mu }}} \right)\, = \,0. \\ \end{gathered} $$
((A.4))

Given τ = T2/T1, we transform (A.4) to

$$\begin{gathered} {{z}^{2}}\mu \frac{{\partial {{f}_{{\mathbf{v}}}}}}{{\partial s}} - 2z\left( {\frac{{\partial {{f}_{{\mathbf{v}}}}}}{{\partial z}} + \tau \frac{{{{\partial }^{2}}{{f}_{{\mathbf{v}}}}}}{{\partial {{z}^{2}}}}} \right) \\ - \frac{\partial }{{\partial \mu }}\left( {(1 - {{\mu }^{2}})\frac{{\partial {{f}_{{\mathbf{v}}}}}}{{\partial \mu }}} \right) = 0. \\ \end{gathered} $$
((A.5))

We substitute fv = e–φ into Eq. (A.5) and obtain the sought-for equation in the dimensionless variables (sz, μ) after differentiation and simple transformations:

$$\begin{gathered} {{z}^{2}}\mu \frac{{\partial \varphi }}{{\partial s}} - 2z\frac{{\partial \varphi }}{{\partial z}}\left( {1 - \tau \frac{{\partial \varphi }}{{\partial z}}} \right) - 2\tau z\frac{{{{\partial }^{2}}\varphi }}{{\partial {{z}^{2}}}} + 2\mu \frac{{\partial \varphi }}{{\partial \mu }} \\ \, + (1 - {{\mu }^{2}}){{\left( {\frac{{\partial \varphi }}{{\partial \mu }}} \right)}^{2}} - (1 - {{\mu }^{2}})\left( {\frac{{{{\partial }^{2}}\varphi }}{{\partial {{\mu }^{2}}}}} \right) = 0. \\ \end{gathered} $$
((A.6))

Q.E.D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gritsyk, P.A., Somov, B.V. On Thermal Runaway Electrons and the Polarization of X-ray Emission in Solar Flares. J. Exp. Theor. Phys. 129, 935–945 (2019). https://doi.org/10.1134/S1063776119090036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119090036

Navigation