Skip to main content
Log in

Color Randomization of Fast Gluon-Gluon Pairs in the Quark-Gluon Plasma

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the color randomization of two-gluon states produced after splitting of a primary fast gluon in the quark-gluon plasma. We find that for the LHC conditions the color randomization of the gg pairs is rather slow. At jet energies E = 100 and 500 GeV, for typical jet path length in the plasma in central Pb+Pb collisions, the SU(3)-multiplet averaged color Casimir operator of the gg pair differs considerably from its value 2Nc for a fully randomized gg state. Our calculations of the energy dependence for generation of the nearly collinear decuplet gg states, that can lead to the baryon jet fragmentation, show that the contribution of the anomalous decuplet color states to the baryon production should become small at pT ≳ 10 GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

Notes

  1. For an infinite uniform QGP \(L_{f}^{{{\text{in}}}}\) ~ 2ωSLPM/\(m_{g}^{2}\), where SLPM is the Landau-Pomeranchuk-Migdal suppression factor and mg is the gluon quasiparticle mass. For RHIC and LHC conditions typically SLPM ~ 0.3–0.5 for mg ~ 400 MeV [20]. Then we find that \(L_{f}^{{{\text{in}}}}\) ~ 2–5 fm at ω ~ 3–5 GeV.

  2. In the literature, the interaction of parton trajectories with QCD matter is often described in terms of the Wilson line factors. This may create an impression that the picture with the fictitious color singlet parton-antiparton system interacting with the medium is valid even for nonperturbative fluctuation of the color fields of the medium. But this is not the case, because for nonperturbative situation the vector potentials in the Wilson lines for the amplitude and in the ones for the complex conjugate amplitude may be different. Even in the perturbation theory the validity of this picture is limited only to the two-gluon t‑channel exchanges.

  3. For three gluons there are two color singlet states: asymmetric ∝ fαβγ and symmetric ∝dαβγ. However, in the case of the ggg splitting the three-body system in the diagram of Fig. 3 may be only in asymmetric color state, because after ggg transition two gluons are in asymmetric color octet state, and the t-channel gluon exchanges cannot change the symmetry of the three-gluon color wave function.

  4. Note that we consider the situation when the color indexes for final gluons in the amplitude and the complex conjugate amplitude may differ. This differs from calculation of the gluon spectrum, when one performs summing over a = c and b = d [11, 46, 47], and the final gluon lines with right and left arrows in Figs. 3, 5 become closed (in the sense of the color flows).

REFERENCES

  1. M. Gyulassy and X. N. Wang, Nucl. Phys. B 420, 583 (1994); nucl-th/9306003.

    Article  ADS  Google Scholar 

  2. R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigné, and D. Schiff, Nucl. Phys. B 483, 291 (1997); hep-ph/9607355; Nucl. Phys. B 484, 265 (1997); hep-ph/9608322.

  3. B. G. Zakharov, JETP Lett. 63, 952 (1996); hep-ph/9607440; Phys. At. Nucl. 61, 838 (1998); hep-ph/9807540.

  4. M. Gyulassy, P. Lévai, and I. Vitev, Nucl. Phys. B 594, 371 (2001); hep-ph/0006010.

    Article  ADS  Google Scholar 

  5. P. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy Phys. 0206, 030 (2002); hep-ph/0204343.

  6. U. A. Wiedemann, Nucl. Phys. A 690, 731 (2001); hep-ph/0008241.

    Article  ADS  Google Scholar 

  7. J. D. Bjorken, Fermilab Preprint 82/59-THY (1982, unpublished).

  8. B. G. Zakharov, JETP Lett. 86, 444 (2007); arXiv:0708.0816.

    Article  ADS  Google Scholar 

  9. G.-Y. Qin, J. Ruppert, C. Gale, S. Jeon, G. D. Moore, and M. G. Mustafa, Phys. Rev. Lett. 100, 072301 (2008); arXiv:0710.0605.

    Article  ADS  Google Scholar 

  10. R. Baier, Yu. L. Dokshitzer, A. H. Mueller, and D. Schiff, J. High Energy Phys. 0109, 033 (2001).

  11. B. G. Zakharov, JETP Lett. 70, 176 (1999); hep-ph/9906536.

    Article  ADS  Google Scholar 

  12. B. G. Zakharov, JETP Lett. 73, 49 (2001); hep-ph/0012360.

    Article  ADS  Google Scholar 

  13. P. Arnold and S. Iqbal, J. High Energy Phys. 1504, 070 (2015);

  14. J. High Energy Phys. 1609, 072(E) (2016) arXiv:1501. 04964.

  15. P. Arnold, H.-C. Chang, and S. Iqbal, J. High Energy Phys. 1610, 100 (2016); arXiv:1606.08853.

  16. P. Arnold, H.-C. Chang, and S. Iqbal, J. High Energy Phys. 1610, 124 (2016); arXiv:1608.05718.

  17. K. Zapp, G. Ingelman, J. Rathsman, J. Stachel, and U. A. Wiedemann, Eur. Phys. J. C 60, 617 (2009); arXiv:0804.3568.

    Article  ADS  Google Scholar 

  18. K. C. Zapp, F. Krauss, and U. A. Wiedemann, J. High Energy Phys. 1303, 080 (2013); arXiv:1212.1599.

  19. I. P. Lokhtin, A. V. Belyaev, and A. M. Snigirev, Eur. Phys. J. C 71, 1650 (2011); arXiv:1103.1853.

    Article  ADS  Google Scholar 

  20. S. Cao et al. (JETSCAPE Collab.), Phys. Rev. C 96, 024909 (2017); arXiv:1705.00050.

  21. P. Lévai and U. Heinz, Phys. Rev. C 57, 1879 (1998).

    Article  ADS  Google Scholar 

  22. H. Song, S. A. Bass, U. Heinz, and T. Hirano, Phys. Rev. C 83, 054910 (2011);

    Article  ADS  Google Scholar 

  23. Phys. Rev. C 86, 059903(E) (2012); arXiv:1101.4638.

  24. B. G. Zakharov, JETP Lett. 88, 781 (2008); arXiv:0811.0445.

    Article  ADS  Google Scholar 

  25. A. Leonidov and V. Nechitailo, Eur. Phys. J. C 71, 1537 (2011); arXiv:1006.0366.

    Article  ADS  Google Scholar 

  26. P. Aurenche and B. G. Zakharov, Eur. Phys. J. C 71, 1829 (2011); arXiv:1109.6819.

    Article  ADS  Google Scholar 

  27. A. Beraudo, J. G. Milhano, and U. A. Wiedemann, J. High Energy Phys. 1207, 144 (2012); arXiv:1204.4342.

    Article  ADS  Google Scholar 

  28. A. Beraudo, J. G. Milhano, and U. A. Wiedemann, Phys. Rev. C 85, 031901 (2012); arXiv:1109.5025.

    Article  ADS  Google Scholar 

  29. B. G. Zakharov, in Proceedings of the 33rd Rencontres de Moriond: QCD and High Energy Hadronic Interactions, Les Arcs, France, March 21–28, 1998, p. 465; hep-ph/9807396.

  30. G. C. Rossi and G. Veneziano, Nucl. Phys. B 123, 507 (1977).

    Article  ADS  Google Scholar 

  31. G. C. Rossi and G. Veneziano, Phys. Rep. 63, 149 (1980).

    Article  ADS  Google Scholar 

  32. B. I. Abelev et al. (STAR Collab.), Phys. Rev. Lett. 97, 152301 (2006); nucl-ex/0606003.

    Article  ADS  Google Scholar 

  33. S. S. Adler et al. (PHENIX Collab.), Phys. Rev. Lett. 91, 172301 (2003); nucl-ex/0305036.

    Article  ADS  Google Scholar 

  34. J. Adam et al. (ALICE Collab.), Phys. Rev. C 93, 034913 (2016); arXiv:1506.07287.

  35. Y. Mehtar-Tani, C. A. Salgado, and K. Tywoniuk, Phys. Lett. B 707, 156 (2012); arXiv:1102.4317.

    Article  ADS  Google Scholar 

  36. J. Casalderrey-Solana and E. Iancu, J. Phys. G 38, 124062 (2011); arXiv:1106.3864.

    Article  ADS  Google Scholar 

  37. J. Casalderrey-Solana and E. Iancu, J. High Energy Phys. 1108, 015 (2011); arXiv:1105.1760.

  38. M. R. Calvo, M. R. Moldes, and C. A. Salgado, Phys. Lett. B 738, 448 (2014); arXiv:1403.4892.

    Article  ADS  Google Scholar 

  39. Basics of Perturbative QCD, Ed. by Y. L. Dokshitzer, V. A. Khoze, A. H. Mueller, and S. I. Troian (Frontieres, Gif-sur-Yvette, France, 1991).

    Google Scholar 

  40. J. Casalderrey-Solana, Y. Mehtar-Tani, C. A. Salgado, and K. Tywoniuk, Phys. Lett. B 725, 357 (2013); arXiv:1210.7765.

    Article  ADS  Google Scholar 

  41. A. Kurkela and U. A. Wiedemann, Phys. Lett. B 740, 172 (2015); arXiv:1407.0293.

    Article  ADS  Google Scholar 

  42. P. Caucal, E. Iancu, A. H. Mueller, and G. Soyez, arXiv:1801.09703.

  43. N. N. Nikolaev, W. Schafer, and B. G. Zakharov, Phys. Rev. D 72, 114018 (2005); arXiv:hep-ph/0508310.

    Article  ADS  Google Scholar 

  44. N. Kidonakis, G. Oderda, and G. F. Sterman, Nucl. Phys. B 531, 365 (1998); hep-ph/9803241.

    Article  ADS  Google Scholar 

  45. Yu. L. Dokshitzer and G. Marchesini, Phys. Lett. B 631, 118 (2005); hep-ph/0508130.

    Article  ADS  Google Scholar 

  46. Yu. L. Dokshitzer and G. Marchesini, J. High Energy Phys. 0601, 007 (2006); hep-ph/0509078.

  47. M. H. Seymour, J. High Energy Phys. 0510, 029 (2005); hep-ph/0508305.

  48. J.-P. Blaizot, F. Dominguez, E. Iancu, and Y. Mehtar-Tani, J. High Energy Phys. 1301, 143 (2013); arXiv:1209.4585.

    Article  ADS  Google Scholar 

  49. L. Apolinario, N. Armesto, J. G. Milhano, and C. A. Salgado, J. High Energy Phys. 1502, 119 (2015); arXiv:1407.0599.

    Article  ADS  Google Scholar 

  50. J. D. Bjorken, Phys. Rev. D 27, 140 (1983).

    Article  ADS  Google Scholar 

  51. B. G. Zakharov, J. Phys. G 40, 085003 (2013); arXiv:1304.5742.

    Article  ADS  Google Scholar 

  52. B. G. Zakharov, J. Phys. G 41, 075008 (2014); arXiv:1311.1159.

    Article  ADS  Google Scholar 

  53. B. Müller and K. Rajagopal, Eur. Phys. J. C 43, 15 (2005).

    Article  ADS  Google Scholar 

  54. O. Kaczmarek and F. Zantow, Phys. Rev. D 71, 114510 (2005); hep-lat/0503017.

    Article  ADS  Google Scholar 

  55. N. N. Nikolaev and B. G. Zakharov, Phys. Lett. B 327, 149 (1994).

    Article  ADS  Google Scholar 

  56. Yu. L. Dokshitzer, V. A. Khoze, and S. I. Troyan, Phys. Rev. D 53, 89 (1996).

    Article  ADS  Google Scholar 

  57. R. Baier, Nucl. Phys. A 715, 209 (2003); hep-ph/0209038.

    Article  ADS  Google Scholar 

  58. E. V. Shuryak, Rev. Mod. Phys. 65, 1 (1993).

    Article  ADS  Google Scholar 

  59. J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963).

    Article  ADS  Google Scholar 

  60. C. Rebbi and R. Slansky, Rev. Mod. Phys. 42, 68 (1970).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work has been supported by the RScF grant 16-12-10151.

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

APPENDIX

APPENDIX

The contribution to the two-gluon color wave function 〈ab|Ψ〉 of a given irreducible SU(3) multiplet R in the Clebsch-Gordan decomposition (4) can be written as P[R\(]_{{cd}}^{{ab}}\)cd|Ψ〉, where P[R] is the projector operator for the multiplet R given by the general quantum mechanical formula (14). The projectors onto the multiplets 1, 8A, 8S, 27, 10, and \(\overline {10} \) can be written in terms of the Kronecker deltas, antisymmetric tensor fabc and symmetric tensor dabc as

$$P[1]_{{cd}}^{{ab}} = \frac{1}{8}{{\delta }_{{ab}}}{{\delta }_{{cd}}},$$
((40))
$$P[{{8}_{A}}]_{{cd}}^{{ab}} = \frac{1}{3}{{f}_{{abk}}}{{f}_{{kcd}}},$$
((41))
$$P[{{8}_{S}}]_{{cd}}^{{ab}} = \frac{3}{5}{{d}_{{abk}}}{{d}_{{kcd}}},$$
((42))
$$P[27]_{{cd}}^{{ab}} = \frac{1}{2}({{\delta }_{{ac}}}{{\delta }_{{bd}}} + {{\delta }_{{ad}}}{{\delta }_{{bc}}}) - \frac{1}{8}{{\delta }_{{ab}}}{{\delta }_{{cd}}} - \frac{3}{5}{{d}_{{abk}}}{{d}_{{kcd}}},$$
((43))
$$P[10]_{{cd}}^{{ab}} = \frac{1}{4}({{\delta }_{{ac}}}{{\delta }_{{bd}}} - {{\delta }_{{ad}}}{{\delta }_{{bc}}}) - \frac{1}{6}{{f}_{{abk}}}{{f}_{{kcd}}} + \frac{i}{2}Y_{{cd}}^{{ab}},$$
((44))
$$P[\overline {10} ]_{{cd}}^{{ab}} = \frac{1}{4}({{\delta }_{{ac}}}{{\delta }_{{bd}}} - {{\delta }_{{ad}}}{{\delta }_{{bc}}}) - \frac{1}{6}{{f}_{{abk}}}{{f}_{{kcd}}} - \frac{i}{2}Y_{{cd}}^{{ab}},$$
((45))

where

$$Y_{{cd}}^{{ab}} = - \frac{1}{2}({{d}_{{ack}}}{{f}_{{kbd}}} + {{f}_{{ack}}}{{f}_{{kbd}}}).$$
((46))

The two-gluon color wave function for the states 1, 8S, 27 are symmetric in permutations of gluon color indexes ab and cd, and the states 8A, 10, \(\overline {10} \) are antisymmetric. The contribution of the first three terms in the formulas for the decuplet projectors is clearly antisymmetric, the fact that the term \(Y_{{cd}}^{{bc}}\) is also antisymmetric for ab and cd is evident from the identity

$${{d}_{{ack}}}{{f}_{{kbd}}} + {{f}_{{ack}}}{{d}_{{kbd}}} = {{d}_{{cbk}}}{{f}_{{kda}}} + {{f}_{{cbk}}}{{d}_{{kda}}}.$$
((47))

Calculations of the projectors for 1, 8S, 27, and 8A multiplets are trivial, but for 10 and \(\overline {10} \) multiplets they are more complicated. The projectors P [10] and P[\(\overline {10} \)] can be obtained after straightforward (somewhat tedious) calculations with the help of the standard formula (14) using for the decuplet (antidecuplet) states the symmetric spinor tensors Ψijkijk). For the two-gluon state these tensors can be built using the spinor form of the gluon wave function (ga\()_{k}^{i}\) = \(\frac{1}{{\sqrt 2 }}\)a\()_{k}^{i}\).

An important fact for our calculations is that the projectors are proportional to the four-gluon color wave functions of the color singlets |\(R\bar {R}\)〉 built from R and \(\bar {R}\) multiplets (16). The fact that the wave function given by (16) describes a color singlet can be checked by calculating the expectation value

$$\langle R\bar {R}{\text{|}}{{T}^{\alpha }}{\text{|}}R\bar {R}\rangle $$
((48))

of the total color generator Tα = \(\sum\nolimits_{i = 1}^4 {T_{i}^{\alpha }} \) for four gluons, which should vanish for color singlet states. One can easily show that this is true. Indeed, say, for the contribution from i = 1 we have

$$\langle R\bar {R}{\text{|}}T_{1}^{\alpha }{\text{|}}R\bar {R}\rangle \propto (P[R]_{{cd}}^{{a'b}}){\text{*}}{{f}_{{\alpha a'a}}}P[R]_{{cd}}^{{ab}}.$$
((49))

Since (P[R\(]_{{cd}}^{{a' b}}\))* = P[R\(]_{{a'b}}^{{cd}}\) and P[R\(]_{{cd}}^{{ab}}\)P[R\(]_{{a'b}}^{{cd}}\)) = P[R\(]_{{a'b}}^{{ab}}\) ∝ δaa' one can see that the left-hand side of (49) ∝ faa = 0. The fact that the projector operator (14) is proportional to the color singlet wave function |\(R\bar {R}\)〉 is not surprising, because the last factor on the right-hand side of (14) is proportional to the wave function of the complex conjugate state 〈cd|\(\bar {R}\bar {\nu }\)〉 (where the component \(\bar {\nu }\) has the “magnetic” quantum numbers opposite to that for ν) with the phase factor similar to that in the Clebsch-Gordan sum over the internal quantum number ν for the color singlet state |\(R\bar {R}\)〉 [57, 58] built from the states |Rν〉 and |\(\bar {R}\bar {\nu }\)〉.

The crossing operator Uts from the s-channel basis to the t-channel one can be calculated with the help of the above formulas for the s-channel projectors and similar formulas for the t-channel basis (that can be obtained by permuting bc). However, the crossing operation involves also the mixed states |8A8S〉 and |8S8A〉. It is convenient to use the linear combinations (26), and take the wave functions for the components |8A8S〉 and |8S8A〉 in the s-channel basis in the form

$$\begin{gathered} \langle abcd{\text{|}}{{8}_{A}}{{8}_{S}}\rangle = \frac{1}{{\sqrt {40} }}{{f}_{{abk}}}{{d}_{{kcd}}}, \\ \langle abcd{\text{|}}{{8}_{S}}{{8}_{A}}\rangle \rangle = \frac{1}{{\sqrt {40} }}{{d}_{{abk}}}{{f}_{{kcd}}}. \\ \end{gathered} $$
((50))

Similar formulas for the t-channel basis are obtained by interchanging bc. A straightforward calculation gives

$${{\left( {\begin{array}{*{20}{c}} {{\text{|}}11\rangle } \\ {{\text{|}}{{8}_{A}}{{8}_{A}}\rangle } \\ {{\text{|}}{{8}_{S}}{{8}_{S}}\rangle } \\ {{\text{|}}2727\rangle } \\ {{\text{|}}10\overline {10} \rangle } \\ {{\text{|}}\overline {10} 10\rangle } \\ {{\text{|}}{{{({{8}_{A}}{{8}_{S}})}}_{ + }}\rangle } \\ {{\text{|}}{{{({{8}_{A}}{{8}_{S}})}}_{ - }}\rangle } \end{array}} \right)}_{t}} = \left( {\begin{array}{*{20}{c}} {\frac{1}{8}}&{\frac{1}{{\sqrt 8 }}}&{\frac{1}{{\sqrt 8 }}}&{\frac{{3\sqrt 3 }}{8}}&{\frac{{\sqrt 5 }}{{4\sqrt 2 }}}&{\frac{{\sqrt 5 }}{{4\sqrt 2 }}}&0&0 \\ {\frac{1}{{\sqrt 8 }}}&{\frac{1}{2}}&{\frac{1}{2}}&{ - \frac{{\sqrt 3 }}{{2\sqrt 2 }}}&0&0&0&0 \\ {\frac{1}{{\sqrt 8 }}}&{\frac{1}{2}}&{ - \frac{3}{{10}}}&{\frac{{3\sqrt 3 }}{{10\sqrt 2 }}}&{ - \frac{1}{{\sqrt 5 }}}&{ - \frac{1}{{\sqrt 5 }}}&0&0 \\ {\frac{{3\sqrt 3 }}{8}}&{ - \frac{{\sqrt 3 }}{{2\sqrt 2 }}}&{\frac{{3\sqrt 3 }}{{10\sqrt 2 }}}&{\frac{7}{{40}}}&{ - \frac{{\sqrt 3 }}{{4\sqrt {10} }}}&{ - \frac{{\sqrt 3 }}{{4\sqrt {10} }}}&0&0 \\ {\frac{{\sqrt 5 }}{{4\sqrt 2 }}}&0&{ - \frac{1}{{\sqrt 5 }}}&{ - \frac{{\sqrt 3 }}{{4\sqrt {10} }}}&{\frac{1}{4}}&{\frac{1}{4}}&{ - \frac{1}{{\sqrt 2 }}}&0 \\ {\frac{{\sqrt 5 }}{{4\sqrt 2 }}}&0&{ - \frac{1}{{\sqrt 5 }}}&{ - \frac{{\sqrt 3 }}{{4\sqrt {10} }}}&{\frac{1}{4}}&{\frac{1}{4}}&{\frac{1}{{\sqrt 2 }}}&0 \\ 0&0&0&0&{ - \frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}&0&0 \\ 0&0&0&0&0&0&0&{ - 1} \end{array}} \right) \times {{\left( {\begin{array}{*{20}{c}} {{\text{|}}11\rangle } \\ {{\text{|}}{{8}_{A}}{{8}_{A}}\rangle } \\ {{\text{|}}{{8}_{S}}{{8}_{S}}\rangle } \\ {{\text{|}}2727\rangle } \\ {{\text{|}}10\overline {10} \rangle } \\ {{\text{|}}\overline {10} 10\rangle } \\ {{\text{|}}{{{({{8}_{A}}{{8}_{S}})}}_{ + }}\rangle } \\ {{\text{|}}{{{({{8}_{A}}{{8}_{S}})}}_{ - }}\rangle } \end{array}} \right)}_{s}}$$
((51))

As one can see the crossing matrix is real and symmetrical.

A straightforward calculation of the 6 × 6 diffraction matrix in the s-channel basis with the help of the above formulas for the projectors gives (the order of states is the same as in (10))

$$\begin{gathered} \hat {\sigma }(\rho ) \\ = {{\sigma }_{8}}(\rho ) \times \left( {\begin{array}{*{20}{c}} 2&{ - \frac{1}{{\sqrt 2 }}}&0&0&0&0 \\ { - \frac{1}{{\sqrt 2 }}}&{\frac{3}{2}}&{ - \frac{1}{2}}&{ - \frac{1}{{\sqrt 6 }}}&0&0 \\ 0&{ - \frac{1}{2}}&{\frac{3}{2}}&0&{ - \frac{1}{{\sqrt 5 }}}&{ - \frac{1}{{\sqrt 5 }}} \\ 0&{ - \frac{1}{{\sqrt 6 }}}&0&{\frac{3}{2}}&{ - \frac{2}{{\sqrt {30} }}}&{ - \frac{2}{{\sqrt {30} }}} \\ 0&0&{ - \frac{1}{{\sqrt 5 }}}&{ - \frac{2}{{\sqrt {30} }}}&1&0 \\ 0&0&{ - \frac{1}{{\sqrt 5 }}}&{ - \frac{2}{{\sqrt {30} }}}&0&1 \end{array}} \right), \\ \end{gathered} $$
((52))

where σ8(ρ) is the dipole cross section for a color singlet two-gluon system of the size ρ.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, B.G. Color Randomization of Fast Gluon-Gluon Pairs in the Quark-Gluon Plasma. J. Exp. Theor. Phys. 128, 243–258 (2019). https://doi.org/10.1134/S1063776119020146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119020146

Navigation